Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variation in immune system cells lowers heart disease risk

16.04.2003


In a serendipitous spin-off of HIV/AIDS research, scientists at the National Institute of Allergy and Infectious Diseases (NIAID) and colleagues have found strong evidence that a genetic variation affecting immune system cells protects against heart disease. Details of the work, which also provides further evidence for the role of inflammation in heart disease, will appear in the April 15 issue of the Journal of Clinical Investigation.



"This work demonstrates how NIAID’s commitment to HIV/AIDS research can provide insights into the mechanisms of other diseases," says NIAID director Anthony S. Fauci, M.D. "The money spent on this research, so important to the millions of people around the world infected with HIV, also results in wider ranging benefits."

"The genetic variation we studied has a positive and protective effect against atherosclerosis. This effect is similar in magnitude, though opposite in value, to known negative risk factors such as diabetes and smoking. In other words, as bad as the negative risk factors are bad, this factor is good," says senior study author Philip M. Murphy, M.D. "In addition, the study may help explain part of the hereditary component of heart disease, establishing not only a genetic association but also giving evidence for a biological cause."


Dr. Murphy and colleague David McDermott, M.D., have been studying several different receptor molecules on the surface of immune system cells to understand the role these molecules play in HIV infection. Recently, they concentrated on a receptor molecule called CX3CR1, which binds to a signaling molecule called fractalkine. Fractalkine, sometimes found in atherosclerotic vessels, attracts immune system cells bearing CX3CR1 and helps them attach to infected or diseased tissue. The NIAID scientists speculated that in atherosclerotic tissues, fractalkine might attract immune system cells and encourage them to bind to the walls of blood vessels, thereby triggering inflammation and plaque formation that eventually blocks the vessel.

Working with colleagues at the National Heart, Lung, and Blood Institute (NHLBI), the NIAID scientists performed a detailed genetic analysis of the offspring cohort of the famous Framingham Heart Study. In this population of more than 1,800 individuals, the researchers showed that a genetic variant of the CX3CR1 receptor, called CX3CR1-M280, was associated with a significantly lower risk of heart disease, even after adjusting for age, sex and negative risk factors such as cigarette smoking, high cholesterol, diabetes and hypertension.

Because previous studies established that mice lacking the CX3CR1 receptor also had reduced risk of heart disease, the NIAID scientists speculated that the human CX3CR1 variant might not function well. A battery of laboratory tests proved that this was in fact the case: When compared with "normal" CX3CR1, the M280 variant did not bind well to fractalkine or respond to its attracting signal. The finding suggests that people with the M280 variation are less susceptible to arterial inflammation triggered by immune system cells. So far, there is no evidence that the variant causes any ill effects. Duke University Medical Center researcher Dhavalkumar D. Patel, M.D., Ph.D., collaborated with the NIAID team on this part of the study.

"The strength of this study is that it examined an entire population, not just one group of people already at risk for heart disease," explains Dr. McDermott. "When you examine an entire population, you are less likely to overestimate the significance of the risk factor you are studying." The collaboration of Dr. Christopher O’Donnell and colleagues at NHLBI and the Framingham Heart Study were invaluable to this effort, Dr. McDermott notes.

"This study provides a great example of how the Framingham genetic database can contribute to multidisciplinary collaboration," says NHLBI Director Claude Lenfant, M.D. "This database is available for use by researchers and provides important and novel information that may one day translate to patient care."

By establishing a connection between a specific cell receptor, CX3CR1, and atherosclerosis, the researchers have spotlighted CX3CR1 as a potential target for drugs that block its action. "Even though scientists have the entire sequenced human genome to examine, it is still extremely difficult to find drug targets unless you have robust cohorts like this one to test," notes Dr. Murphy.

The M280 variant gene differs from the usual CX3CR1 gene at two key points. Next, the NIAID researchers would like to discover if one, the other, or both of these changes cause the variant molecule to function differently. In addition, the researchers would like to follow up on studies in mice that suggest CX3CR1 plays a role in other inflammatory diseases such as stroke or the kidney disease glomerulonephritis.

Jeff Minerd | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>