Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers new insights into angiogenesis inhibitors

14.04.2003


In working to halt the overgrowth of blood vessels that feed cancerous tumors, the antiangiogenic molecules endostatin and tumstatin take two distinct and very different tactics, according to a study in the April 15 issue of the Proceedings of the National Academy of Sciences (PNAS).



These findings, which currently appear on-line, suggest for the first time that these two agents combined may prove more effective in battling cancer than either one used separately.

"Just as aspirin, acetaminophen and ibuprofen each work in different ways to relieve pain, it now appears that endogenous inhibitors like endostatin and tumstatin work in different ways to halt angiogenesis," explains the study’s senior author Raghu Kalluri, Ph.D., of the Center for Matrix Biology at Beth Israel Deaconess Medical Center (BIDMC). "These findings may help us to be more informed in the ways we use these molecules as potential drug candidates in the future."


Angiogenesis has been the focus of attention among cancer researchers for more than 30 years. The angiogenesis process takes place when a single layer of endothelial cells – which line the inside of the small blood vessels – break off from the vessels’ membrane and develop into new capillaries. In a number of diseases – including psoriasis, rheumatoid arthritis and diabetic retinopathy, as well as cancer – it is the unchecked growth of these capillaries that contributes to disease pathogenesis.

Over the years, scientists have identified a number of endogenous protein fragments which can put a halt to this process. Known as endogenous angiogenesis inhibitors, these include endostatin and tumstatin. Subsequent investigations have shown that these angiogenesis inhibitors might function by binding to a group of cell surface associated molecules known as integrins.

In this new study, Kalluri and his colleagues discovered that these two inhibitory molecules were binding to two separate and distinct integrins – endostatin to a5b1 integrin and tumstatin to aVb3 integrin – thereby achieving the same end effect of inhibiting angiogenesis, but by diverse mechanisms.

"While human endostatin targets the endothelial cells’ migratory abilities, human tumstatin prevents endothelial cells from proliferating," says Kalluri, who is an associate professor of medicine at Harvard Medical School. "These two different approaches lead to the same outcome – halting the outgrowth of the blood vessels and inhibition of tumor growth."

With this discovery, he adds, clinicians may be able to use these molecules in a more targeted fashion. "In order for endostatin to work, it has to be targeting tumors with the a5b1 positive tumor vasculature. Likewise, tumstatin must target tumors with aVb3 positive tumor vasculature," he explains. "Future clinical trials of these antiangiogenic therapies may benefit by building in these considerations."

"This is a very important piece of work," notes Judah Folkman, M.D., of Children’s Hospital Boston and Harvard Medical School, in whose laboratory endostatin was first discovered with Michael O’Reilly in 1997. "This paper shows an emerging set of proteins in the body which guard against abnormal angiogenesis, similar to the set of proteins that guard against blood clotting." This new finding, he adds, "suggests that because these two proteins inhibit angiogenesis by two separate pathways, they could eventually be used together for the treatment of cancer."

Study co-authors include Beth Israel Deaconess Medical Center researchers Akulapalli Sudhakar, Ph.D., Hikaru Sugimoto, M.D., Ph.D., Changqing Yang, M.D., Ph.D., Julie Lively, Ph.D., and Michael Zeisberg, M.D.


This study was funded by grants from the National Institutes of Health and funds from the Program in Matrix Biology at BIDMC. BIDMC owns patent rights to human tumstatin, which are exclusively licensed to Ilex Oncology, Inc. Raghu Kalluri and BIDMC hold equity in Ilex.

Beth Israel Deaconess Medical Center is a major patient care, research and teaching affiliate of Harvard Medical School and a founding member of CareGroup Healthcare System. Beth Israel Deaconess is the third largest recipient of National Institutes of Health research funding among independent U.S. teaching hospitals.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu/

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>