Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers new insights into angiogenesis inhibitors

14.04.2003


In working to halt the overgrowth of blood vessels that feed cancerous tumors, the antiangiogenic molecules endostatin and tumstatin take two distinct and very different tactics, according to a study in the April 15 issue of the Proceedings of the National Academy of Sciences (PNAS).



These findings, which currently appear on-line, suggest for the first time that these two agents combined may prove more effective in battling cancer than either one used separately.

"Just as aspirin, acetaminophen and ibuprofen each work in different ways to relieve pain, it now appears that endogenous inhibitors like endostatin and tumstatin work in different ways to halt angiogenesis," explains the study’s senior author Raghu Kalluri, Ph.D., of the Center for Matrix Biology at Beth Israel Deaconess Medical Center (BIDMC). "These findings may help us to be more informed in the ways we use these molecules as potential drug candidates in the future."


Angiogenesis has been the focus of attention among cancer researchers for more than 30 years. The angiogenesis process takes place when a single layer of endothelial cells – which line the inside of the small blood vessels – break off from the vessels’ membrane and develop into new capillaries. In a number of diseases – including psoriasis, rheumatoid arthritis and diabetic retinopathy, as well as cancer – it is the unchecked growth of these capillaries that contributes to disease pathogenesis.

Over the years, scientists have identified a number of endogenous protein fragments which can put a halt to this process. Known as endogenous angiogenesis inhibitors, these include endostatin and tumstatin. Subsequent investigations have shown that these angiogenesis inhibitors might function by binding to a group of cell surface associated molecules known as integrins.

In this new study, Kalluri and his colleagues discovered that these two inhibitory molecules were binding to two separate and distinct integrins – endostatin to a5b1 integrin and tumstatin to aVb3 integrin – thereby achieving the same end effect of inhibiting angiogenesis, but by diverse mechanisms.

"While human endostatin targets the endothelial cells’ migratory abilities, human tumstatin prevents endothelial cells from proliferating," says Kalluri, who is an associate professor of medicine at Harvard Medical School. "These two different approaches lead to the same outcome – halting the outgrowth of the blood vessels and inhibition of tumor growth."

With this discovery, he adds, clinicians may be able to use these molecules in a more targeted fashion. "In order for endostatin to work, it has to be targeting tumors with the a5b1 positive tumor vasculature. Likewise, tumstatin must target tumors with aVb3 positive tumor vasculature," he explains. "Future clinical trials of these antiangiogenic therapies may benefit by building in these considerations."

"This is a very important piece of work," notes Judah Folkman, M.D., of Children’s Hospital Boston and Harvard Medical School, in whose laboratory endostatin was first discovered with Michael O’Reilly in 1997. "This paper shows an emerging set of proteins in the body which guard against abnormal angiogenesis, similar to the set of proteins that guard against blood clotting." This new finding, he adds, "suggests that because these two proteins inhibit angiogenesis by two separate pathways, they could eventually be used together for the treatment of cancer."

Study co-authors include Beth Israel Deaconess Medical Center researchers Akulapalli Sudhakar, Ph.D., Hikaru Sugimoto, M.D., Ph.D., Changqing Yang, M.D., Ph.D., Julie Lively, Ph.D., and Michael Zeisberg, M.D.


This study was funded by grants from the National Institutes of Health and funds from the Program in Matrix Biology at BIDMC. BIDMC owns patent rights to human tumstatin, which are exclusively licensed to Ilex Oncology, Inc. Raghu Kalluri and BIDMC hold equity in Ilex.

Beth Israel Deaconess Medical Center is a major patient care, research and teaching affiliate of Harvard Medical School and a founding member of CareGroup Healthcare System. Beth Israel Deaconess is the third largest recipient of National Institutes of Health research funding among independent U.S. teaching hospitals.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>