Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endostatin, radiation therapy combination stops blood vessel growth in mice

07.04.2003


Researchers report that in laboratory animals, the combination of radiation and the anti-angiogenic drug, endostatin, appears to work synergistically together to stop development of new blood vessels that seek to grow and nourish damaged tumors.


Researchers at The University of Texas M. D. Anderson Cancer Center found that the regrowth of new blood vessels was reduced five-fold in mice with implanted squamous cell cancer treated with radiation and endostatin compared to diseased mice that had radiation or endostatin alone, says Satoshi Itasaka, M.D., a visiting postdoctoral fellow from Kyoto, Japan.

"Endostatin enhanced the anti-tumor effects of irradiation and 40 percent of mice in the combined treatment group achieved long-term survival and tumor control," says Itasaka.

The researchers then examined the tumors and found that expression of crucial proteins varied among the treatment groups. Specifically, a "sharp" increase in VEGF/VPF, IL-8 and MMP2 proteins were found in tumors that had been irradiated. These proteins are proangiogenic and invasive factors that are needed to "signal" blood vessels to grow to tumor cells, to nourish them. Radiation increased levels of these proteins, but then endostatin "blocked" them from acting.



"After radiation, there is a regrowth of blood vessels as well as tumor cells, and endostatin seems to work to stop blood vessel regrowth," says Itasaka. "Why the combination of irradiation and endostatin works well is not fully understood yet, but it appears they may overcome the limitations of each other."

Other studies have looked at the effect of a combination of radiation and anti-angiogenesis drugs on death of blood vessel cells, but this is the first to examine whether these blood vessel cells regrow after irradiation, and what effect endostatin has on that regrowth, he says.

Laura Sussman | EurekAlert!

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Bacterial Nanosized Speargun Works Like a Power Drill

26.09.2017 | Life Sciences

The fastest light-driven current source

26.09.2017 | Physics and Astronomy

Beer can lift your spirits

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>