Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain gliomas progress as function of crucial gene is lost

07.04.2003


For the first time, researchers are characterizing the molecular processes that turn brain cancer deadly, and their work may result in a diagnostic test that can predict patient survival.



The research, by scientists at The University of Texas M. D. Anderson Cancer Center demonstrates that degree of loss of a crucial tumor suppressor gene, the AP-2( transcription factor, correlates with progression of different human gliomas.

For example, researchers found that normal brain tissue, as well as grade II gliomas, maintained expression of AP-2(, whereas 96 percent of grade III glioma, and almost 99 percent of grade IV glioma had lost AP-2(.


"Although previous molecular markers have been identified in malignant gliomas, none have exhibited such a strong correlation with progression, indicating the pivotal role of this gene," says Amy Heimberger, M.D., assistant professor in the Department of Neurosurgery.

The findings one day may be clinically important, says Eric McGary, M.D., Ph.D., a clinical fellow.

If validated through further study, the results can help scientists devise a diagnostic test to check for loss of function of the AP-2( gene, which can help doctors and patients know about treatment options. "No such test exists like that now," he says. Dr. Heimberger is following the long-term survival of patients within the various grades of gliomas to determine if loss of the AP-2( confers a more serious prognosis.

McGary led the effort to characterize how cancer develops when the AP-2( gene, which normally protects against cancer development, is lost. They have found that other tumors such as melanoma become increasingly deadly when the gene is no longer active, and have described its role in breast and prostate cancer as well.

The AP-2( transcription factor controls the expression of many genes, including c-Kit, which regulates cellular proliferation and differentiation, MUC18, an adhesion molecule involved in angiogenesis, and MMP2, which is involved in invasion. When AP-2( is lost, less c-Kit, but more MUC18 and MMP2 are produced, resulting in an increased potential of the cell to grow and divide uncontrollably.

"As such, AP-2( acts as a tumor suppressor gene," says Menashe Bar-Eli, PhD, professor in the Division of Cancer Medicine and a senior member of the research team.

Looking at tumor samples taken from 279 patients with different kinds of brain cancer, the research team used a tissue array constructed by Dr. Gregory Fuller, associate professor in the Department of Pathology, to look for AP-2( gene expression.

In addition to their findings of different stages of gliomas, they found that 21.5 percent of oligodendrogliomas did not express AP-2(, but this increased to 66 percent in cases of anaplastic oligodendrogliomas.

The team also looked at glioblastomas, which are the most common malignant brain tumors in adults and are the most resistant and deadly of all brain cancers to treat. They found that none of the four different glioblastoma cell lines they tested expressed any detectable levels of AP-2(.

"The discovery of the ubiquitous loss of AP-2( in high-grade malignant gliomas provides a unique target for new therapies aimed at restoring the function of that gene," says Heimberger. "We are already looking at trying to replace AP-2( function in animal models with gene therapy in order to slow down growth of the tumor," McGary added.

Laura Sussman | EurekAlert!

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>