Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dartmouth researchers find new imaging method may lower risks for abdominal aortic aneurysms


Results of a study by researchers at Dartmouth-Hitchcock Medical Center (DHMC) and Dartmouth Thayer School of Engineering could have implications for choosing which patients with abdominal aortic aneurysms should have surgery and which ones should simply have follow-up with noninvasive studies.

In an article published in the April issue of the Journal of Vascular Surgery, Dr. Mark Fillinger and colleagues describe a new noninvasive method for evaluating abdominal aortic aneurysms (AAA). They found that the new method – examining aneurysm wall stress – predicts AAA rupture risk better than aneurysm diameter, which has been used to predict rupture risk for over 40 years.

The multidisciplinary study was sponsored by the National Institutes of Health and the National Heart Lung and Blood Institute. In the study, conducted at Dartmouth-Hitchcock Medical Center, over 100 patients who had computed tomography scans (CT scans) during the course of routine care had AAA “wall stress analysis”. The CT scan is processed through a series of computer programs, including an engineering process called finite element analysis. Finite element analysis breaks the structure into thousands of tiny elements so a computer can calculate the wall stress using the three-dimensional shape of the AAA (from the CT scan), the patient’s blood pressure, and the tissue properties of typical AAAs. The result is a computer-generated “stress map” that displays the aneurysm wall stress (the force trying to pull the aneurysm apart and cause rupture).

The patients in the study were generally under observation for their aneurysm for one of three reasons: 1) because the aneurysm was felt to be too small to repair, 2) because the risks of repair were felt to be too high compared to the risk of aneurysm rupture, or 3) because the patient decided not to have aneurysm repair. The outcomes of observation were then compared based on the standard method of determining rupture risk (maximum AAA diameter) versus the maximum stress within the aneurysm wall. A prior study by this group had determined that wall stress was high at the time of rupture, but this was the first large study of AAA wall stress in patients under extended periods of observation.

Researchers found that the new technique (aneurysm wall stress analysis) predicted the risk of rupture better than maximum AAA diameter, with a 25 fold increase in rupture risk for patients with high AAA wall stress, and only 9 fold higher rupture risk for patients with large diameter (over 5.5 cm). The location of rupture (when known) was also consistent with the location of maximum stress predicted by the computerized stress map. Interestingly, some patients with small aneurysms had high wall stress (high risk of rupture) and some patients with large aneurysms had low wall stress (low risk of rupture).

“This study has several important aspects. Some patients with small aneurysms (based on diameter) have an unexpectedly high risk of rupture and should have surgery earlier than is typically recommended” says Dr Fillinger. “Other patients with larger aneurysms, but high risks for surgery, may delay surgery and have observation with noninvasive studies if we can reliably predict that they have a low rupture risk. Another impact of this study may be that blood pressure control in aneurysm patients will be examined with more scrutiny, since blood pressure plays a key role in AAA wall stress. We have made great strides with minimally invasive surgery for aortic aneurysms, but not everyone is a candidate for these techniques. AAA wall stress analysis may be able to prevent rupture in some patients and prevent unnecessary surgery in others."

The risk of rupture relative to AAA diameter and female gender (known risks for aneurysm rupture) were consistent with recent large clinical trials in the US and UK. In those studies, patients with AAAs under close observation with ultrasound every 6 months still had a small risk of rupture, with higher risks for women. “The consistency of our current study with the US and UK small aneurysm trials is encouraging. In future work, we hope to determine why females are at greater risk for rupture than males. We would like to improve the aneurysm tissue model, and hope to start a larger multicenter study within the next year.”

It is estimated that 2 million people in the US have abdominal aortic aneurysms, and AAA rupture is the thirteenth leading cause of death in men. Many people are unaware they have aortic aneurysms because they cause no symptoms prior to rupture. The increasing incidence of AAA nationwide has lead to more attention regarding screening for AAA, including a recent feature in the Wall Street Journal. Numerous famous people have died of AAA rupture, including Albert Einstein, Lucille Ball, and George C Scott. Senator Bob Dole and Rodney Dangerfield are among celebrities who have recently had AAA repair to prevent rupture.

Dartmouth-Hitchcock Medical Center (DHMC) is an integrated academic medical center located on a 225-acre campus in the heart of New Hampshire’s Upper Connecticut River Valley in Lebanon. DHMC comprises Mary Hitchcock Memorial Hospital, the Dartmouth-Hitchcock Clinic, Dartmouth Medical School and the Veterans Affairs Medical Center in White River Junction, VT.

For more information contact Tamsin Stubbs at (603) 653-1997.

Tamsin Stubbs | DHMC
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>