Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude develops vaccine against potential pandemic influenza virus H5N1 using reverse genetics

03.04.2003


Special modification of reverse genetics created at St. Jude allowed vaccine to be custom-made within weeks of emergence of virus



Scientists at St. Jude Children’s Research Hospital announced today the development of a vaccine against H5N1, a new lethal influenza virus that triggered the World Health Organization (WHO) to declare a pandemic alert in February 2003.

The virus appeared in birds in Hong Kong late last year and subsequently killed one of two infected people with rapidly progressive pneumonia in the past month. St. Jude developed the vaccine in only four weeks from the time it received the H5N1 sample from colleagues in Hong Kong.


The announcement comes at a time when a second, as-yet-unidentified virus, has taken several lives around the world. The unknown virus, which causes severe acute respiratory syndrome (SARS), appears to have originated at the same time and in the same place as the new "flu."

The development of the initial ("seed") batch of H5N1 vaccine is significant because humans do not have a natural immunity to the virus, according to Robert Webster, Ph.D., a member of the Department of Infectious Diseases at St. Jude. Rather, humans appear to become infected through contact with chickens and other birds. In the past the virus killed only the chickens it infected. But the new variant of H5N1 also killed many kinds of wild birds, which is unusual.

If H5N1 acquires the ability to pass from human to human, there would be the potential for concern similar to that for SARS, according to Webster.

"It’s likely there were two things that prevented the 1997 poultry influenza outbreak in Hong Kong from becoming more deadly--its inability to spread from human to human and the slaughter of more than 1.5 million chickens and other birds in the open-air markets of Hong Kong, which eliminated the source of the virus," Webster said. "In fact, the sudden appearance of SARS in the same region of the world is just another warning that the large populations of people and poultry in this region are a potential source of viruses."

Webster is the director of the WHO’s U.S. Collaborating Center at St. Jude that studies animal influenza viruses. It is the only WHO laboratory that focuses on the transmission of animal viruses to humans.

Webster’s laboratory has sent the seed H5N1 vaccine to the Centers for Disease Control in Atlanta and the World Influenza Center in London for further testing, in preparation for initial Phase I and Phase II trials in humans. "It’s important to move right along with these trials in case the virus begins spreading from person to person," Webster says. Led by Richard Webby, Ph.D., and Daniel Perez, Ph.D., the St. Jude laboratory team successfully modified a technique called reverse genetics to permit them to develop the H5N1 vaccine so quickly. Using the samples of H5N1 obtained from Hong Kong, Webby mixed two genes from H5N1 with six genes from a second virus (A/PR8/34)[H1N1]). H1N1 is a rapidly growing "master" strain of virus commonly used to make vaccines.

The genes from flu viruses produce proteins called HA and NA, which are on the surface of the virus, in full "view" of the immune system. Webby took the modified gene for HA and the NA from H5N1 and mixed them inside a cell with six genes from H1N1. The HA gene was modified to abolish its ability to cause disease and therefore made it safer to use in the vaccine.

The genes mixed together, and the resulting vaccine virus produced in the cell thus carried HA and NA from H5N1. But because of the alterations to the HA, and the rest of the genes being derived from H1N1, the new virus vaccine cannot cause disease. Rather, it can only stimulate the immune system to respond to H5N1.

"The St. Jude vaccine is like a gun without ammunition," said Elaine Tuomanen, M.D., director of the St. Jude Department of Infectious Diseases. "The vaccine looks deadly enough for its HA and NA proteins to alert the immune system. But in reality, it’s carrying blanks that can’t cause disease."

Key to the quick success in developing the vaccine was the on-campus availability of GMP (Good Manufacturing Practices) facilities, which are equivalent in quality to those used by pharmaceutical companies to make biological agents such as vaccines. In addition, the centralization of genetic analysis and other molecular biology work, performed in the Hartwell Center for Bioinformatics and Biotechnology at St. Jude, greatly accelerated the process of building the vaccine components.

"We’ve been lucky twice with H5N1--once in 1997 and once so far during this current outbreak--in not experiencing human-to-human transmission," Webster says. "But the mixing bowl in Hong Kong is still stirring up new variations of familiar viruses. Although we just made a vaccine against one of that mixing bowl’s nasty viral brews, SARS shows us there’s always another threat down the road."

St. Jude Children’s Research Hospital St. Jude Children’s Research Hospital, in Memphis, Tennessee, was founded by the late entertainer Danny Thomas. The hospital is an internationally recognized biomedical research center dedicated to finding cures for catastrophic diseases of childhood. The hospital’s work is supported through funds raised by ALSAC. ALSAC covers all costs not covered by insurance for medical treatment rendered at St. Jude Children’s Research Hospital. Families without insurance are never asked to pay. For more information, please visit http://www.stjude.org.


###

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>