Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody therapy can increase the effectiveness of cancer vaccine, early studys

02.04.2003


The benefit of some cancer vaccines may be boosted by treating patients with an antibody that blocks a key protein on immune system T cells, according to a small, preliminary study led by researchers at Dana-Farber Cancer Institute and Brigham and Women’s Hospital.



The study, to be published online on April 1 in the Early Edition of the Proceedings of the National Academy of Sciences (www.pnas.org), tested the effect of a single injection of the antibody MDX-CTLA4 in nine patients who had previously been treated with cancer vaccines for either metastatic melanoma or metastatic ovarian cancer. The result, in every patient who had received a particular kind of vaccine, was widespread death of cancer cells and an increase in the number of immune system cells within the tumors – evidence of a potent immune system attack.

"This study makes a strong case that combined immunotherapy – consisting of a vaccine and antibodies – can elicit a potent immune response to some types of tumors in patients," says the study’s senior author, Glenn Dranoff, MD, of Dana-Farber.


The technique was inspired by the laboratory work of study co-author James Allison, PhD, a Howard Hughes Medical Institute investigator at the University of California, Berkeley. He and his colleagues discovered that a protein, or antigen, called CTLA-4 on T cells restrains the immune system from attacking cancer cells. In a series of laboratory and animal experiments, Allison’s team showed that combining a cancer vaccine with an antibody able to block CTLA-4 resulted in an especially potent immune attack on tumors.

On the basis of those findings, Dranoff and his colleagues launched a Phase I clinical trial of the technique in a small group of patients. Because animal experiments had indicated that giving MDX-CTLA4 in combination with a vaccine might prompt the immune system to attack some normal cells, researchers decided to give the antibody to patients who had already been vaccinated.

Seven of the study participants had metastatic melanoma, a potentially fatal cancer that originates in skin cells, and two had metastatic ovarian cancer. In all three melanoma patients who had been treated with one form of vaccine, tumors showed extensive signs of cell death and were saturated with large numbers of tumor-fighting immune cells. The same results were seen in the two ovarian cancer patients who had been treated with the same type of vaccine. (The vaccine is created by loading tumor cells with a gene called GM-CSF that alerts the immune system to the tumors’ presence, prompting an anti-tumor attack.)

Of the four melanoma patients who had received a different type of vaccine based on melanoma antigens, none experienced a similar benefit, researchers found.

While none of the study participants had serious reactions to the antibody itself, some of the melanoma patients developed a mild immune reaction against normal skin cells called melanocytes, but it was not a dangerous side effect.

Previous clinical trials have shown that vaccines can be at least temporarily effective in treating metastatic melanoma and ovarian cancer, but most patients eventually succumb to their disease. One of the reasons for this may be that the CTLA-4 molecule gradually weakens the immune system’s ability to recognize and respond to tumor cells.

"By blockading CTLA-4 with antibodies, we had hoped to strengthen the immune response produced by cancer vaccines," remarks Dranoff, who is also an associate professor of medicine at Harvard Medical School and a Leukemia and Lymphoma Society clinical scholar. "Work in the laboratory and in animal models suggested that this approach could be effective. The new study offers the first evidence that the technique has promise in human patients, although much more study will be needed to demonstrate that this is the case."

The study’s lead author is Stephen Hodi, MD, of Dana-Farber. Other co-authors were from Massachusetts General Hospital, Massachusetts Eye and Ear Infirmary, Harvard Medical School, and Mederex, Inc.



###
Funding for the research was provided in part by the Berlex Oncology Foundation, National Institutes of Health, the Leukemia and Lymphoma Society, the Cancer Research Institute, and Mederex, Inc.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/
http://www.pnas.org),

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>