Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody therapy can increase the effectiveness of cancer vaccine, early studys

02.04.2003


The benefit of some cancer vaccines may be boosted by treating patients with an antibody that blocks a key protein on immune system T cells, according to a small, preliminary study led by researchers at Dana-Farber Cancer Institute and Brigham and Women’s Hospital.



The study, to be published online on April 1 in the Early Edition of the Proceedings of the National Academy of Sciences (www.pnas.org), tested the effect of a single injection of the antibody MDX-CTLA4 in nine patients who had previously been treated with cancer vaccines for either metastatic melanoma or metastatic ovarian cancer. The result, in every patient who had received a particular kind of vaccine, was widespread death of cancer cells and an increase in the number of immune system cells within the tumors – evidence of a potent immune system attack.

"This study makes a strong case that combined immunotherapy – consisting of a vaccine and antibodies – can elicit a potent immune response to some types of tumors in patients," says the study’s senior author, Glenn Dranoff, MD, of Dana-Farber.


The technique was inspired by the laboratory work of study co-author James Allison, PhD, a Howard Hughes Medical Institute investigator at the University of California, Berkeley. He and his colleagues discovered that a protein, or antigen, called CTLA-4 on T cells restrains the immune system from attacking cancer cells. In a series of laboratory and animal experiments, Allison’s team showed that combining a cancer vaccine with an antibody able to block CTLA-4 resulted in an especially potent immune attack on tumors.

On the basis of those findings, Dranoff and his colleagues launched a Phase I clinical trial of the technique in a small group of patients. Because animal experiments had indicated that giving MDX-CTLA4 in combination with a vaccine might prompt the immune system to attack some normal cells, researchers decided to give the antibody to patients who had already been vaccinated.

Seven of the study participants had metastatic melanoma, a potentially fatal cancer that originates in skin cells, and two had metastatic ovarian cancer. In all three melanoma patients who had been treated with one form of vaccine, tumors showed extensive signs of cell death and were saturated with large numbers of tumor-fighting immune cells. The same results were seen in the two ovarian cancer patients who had been treated with the same type of vaccine. (The vaccine is created by loading tumor cells with a gene called GM-CSF that alerts the immune system to the tumors’ presence, prompting an anti-tumor attack.)

Of the four melanoma patients who had received a different type of vaccine based on melanoma antigens, none experienced a similar benefit, researchers found.

While none of the study participants had serious reactions to the antibody itself, some of the melanoma patients developed a mild immune reaction against normal skin cells called melanocytes, but it was not a dangerous side effect.

Previous clinical trials have shown that vaccines can be at least temporarily effective in treating metastatic melanoma and ovarian cancer, but most patients eventually succumb to their disease. One of the reasons for this may be that the CTLA-4 molecule gradually weakens the immune system’s ability to recognize and respond to tumor cells.

"By blockading CTLA-4 with antibodies, we had hoped to strengthen the immune response produced by cancer vaccines," remarks Dranoff, who is also an associate professor of medicine at Harvard Medical School and a Leukemia and Lymphoma Society clinical scholar. "Work in the laboratory and in animal models suggested that this approach could be effective. The new study offers the first evidence that the technique has promise in human patients, although much more study will be needed to demonstrate that this is the case."

The study’s lead author is Stephen Hodi, MD, of Dana-Farber. Other co-authors were from Massachusetts General Hospital, Massachusetts Eye and Ear Infirmary, Harvard Medical School, and Mederex, Inc.



###
Funding for the research was provided in part by the Berlex Oncology Foundation, National Institutes of Health, the Leukemia and Lymphoma Society, the Cancer Research Institute, and Mederex, Inc.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/
http://www.pnas.org),

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>