Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


OHSU researchers produce first animal model for stress-induced movement disorder


Research helps physicians understand rare form of ataxia that causes patients to appear ’drunk’ at times

Scientists at Oregon Health & Science University are the first to produce an animal model for episodic ataxia. The condition causes patients to suffer bouts of extreme clumsiness where they have balance, speech and motor difficulties. The research helps scientists better understand this rare and intriguing disorder. It may also help provide valuable information for improved, targeted drugs for treatment. The research is printed in the April edition of the journal Nature Neuroscience. It was conducted in conjunction with researchers at the Portland Veterans Affairs Medical Center.

"By developing a mouse model for episodic ataxia, we now have a valuable tool to better understand and treat the disease," said James Maylie, Ph.D., a professor of obstetrics and gynecology in the OHSU School of Medicine. "We have already used this animal model to observe and learn more about cellular mechanisms behind the disease. These disease-linked cells are located in the cerebellum, a portion of the brain involved in motor coordination."

The research also helps explain how a medication commonly used to treat patients works. "Acetazolamide is often given to patients with episodic ataxia," Maylie said. "Using these mice models, we were able to establish how acetazolamide acts at a cellular level to combat the disorder, something that was previously unknown."

Approximately 150,000 Americans are affected by the various forms of ataxia. The disorder is characterized by poor motor coordination. Specifically, it can cause hand coordination problems, poor balance and slurred speech. People with ataxia are often accused of acting drunk. In most ataxia disorders, the coordination problems are present all the time. In episodic ataxia, the coordination problems come on suddenly, often in stressful situations, and last for minutes or hours.

"Episodic ataxia is one form of the condition involving intermittent spells where sufferers simply can’t control their limbs," said John Nutt, M.D., director of the Parkinson Center of Oregon, which also treats patients with ataxia. "These attacks can last anywhere from a couple of minutes to three or four hours, and they are often triggered by stress, exercise or vigorous activity. In between episodes, patients are completely normal. Episodic ataxia is frequently caused by genetic mutations, but in some cases, multiple sclerosis can be the cause."

Years ago Nutt and his colleagues helped define clinical features of what they thought were three different types of inherited episodic ataxia while working with families seen in the OHSU neurogenetics clinic. In 1994 OHSU researchers Michael Litt, Ph.D., professor of molecular and medical genetics in the OHSU School of Medicine, and research associate David Browne, Ph.D., determined that the disease was caused in some families by a mutation in a gene that controls the flow of potassium in and out of nerve cells. This was the first human disease linked to the malfunction of a potassium gene. Testing all the families with this disorder in the neurogenetics clinic proved that two genes, and not three genes as the clinicians had thought, were responsible for the episodic ataxias. Subsequently other investigators found that a second variant of episodic ataxia was caused by a mutation in a gene that controlled the flow of calcium through the cell membrane.

This research was funded by the National Institute of Neurological Disorders and Stroke, a component of the National Institutes of Health, and the National Ataxia Foundation.

Jim Newman | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>