Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Component in plastic bottles found to cause abnormal pregnancies in mice

01.04.2003


Researchers have found disturbing new evidence suggesting that environmental exposure to a ubiquitous substance may cause chromosomally abnormal pregnancies. They have learned that low levels of a compound used in the manufacture of common plastic food and beverage containers and baby bottles interfere with cell division in the eggs of female mice. The disruption of cell division can result in an abnormal number of chromosomes in the eggs, a condition known as aneuploidy, which is the leading cause of mental retardation and birth defects in humans. Down syndrome is an example of a disorder caused by the addition of an extra chromosome.



Patricia Hunt, Ph.D., lead author of the study appearing in the April issue of the journal Current Biology, is concerned because the compound, called Bisphenol A (BPA), which shows hormone-like properties and mimics the effects of naturally produced estrogens, produces a significant increase in genetic abnormalities at extremely low levels.

“Our studies provide the first direct evidence that environmental exposure to BPA acts to disrupt the maturation of the egg and demonstrate a dose-related increase in abnormalities,” says Hunt, an associate professor of genetics at the Case Western Reserve University School of Medicine and an expert in the causes of genetic abnormalities in egg cells. “In addition, they show that, at least in the mouse, exposure to very low doses of BPA within the human exposure range produces detectable effects.”


“These studies raise important questions about the potential impact on human reproduction of BPA and other man-made substances that mimic the actions of hormones,” she says.

Hunt’s laboratory began studying the effects of BPA after control (or normal) mice in research projects began showing genetic abnormalities. In mice, the rate of these abnormalities usually is low. The defects were traced to plastic cages and plastic water bottles that had been inadvertently cleaned with a harsh detergent. The detergent caused BPA to leach from the polycarbonate material used to make the cages and bottles. Over several years, Hunt and her team proceeded to determine how much BPA the mice had been inadvertently exposed to, which was a relatively large amount. Then, they scaled back to see how small a dose would produce effects. This amounted to daily doses of 20 parts/billion over five to seven days, an extremely low level. “We can’t say anything about the effects of BPA on humans,” says Hunt. “Nevertheless, the cell division program for eggs is extraordinarily similar in mice and humans, and the results of our studies in mice are disturbing because brief exposure during the final stages of egg growth were sufficient to cause significant increases in meiotic abnormalities.”


Other authors on the study from Case Western Reserve University are K.E. Koehler, C.A. Hodges, A. Ilagan, R.C. Voigt, T. J. Hassold; from Thoren Caging Systems, Inc., S. Thomas, and from RTI International Research Triangle, B.F. Thomas.

George Stamatis | EurekAlert!
Further information:
http://www.cwru.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>