Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defect of cilia-assembly protein could cause most common genetic cause of kidney failure

01.04.2003


A protein responsible for the assembly of cell cilia – the hair-like projections from cells – may cause polycystic kidney disease, the most common genetic cause of kidney failure, according to a new study at UT Southwestern Medical Center at Dallas.



The study, which will be published online this week and will appear in a future edition of the Proceedings of the National Academy of Sciences, is the first to directly test the role of cilia in polycystic kidney disease. Previous studies have hinted at a possible link, said Dr. Peter Igarashi, chief of nephrology at UT Southwestern and senior author of the study.

"For a long time, renal cilia have been thought to be unimportant organelles," said Igarashi. "This study and others before it have renewed the interest in what cilia are doing normally and also how abnormalities in cilia cause disease."


Polycystic kidney disease (PKD) afflicts about one in every 500 people and causes fluid-filled cysts to accumulate in the kidney, liver and other organs. Formation of the cysts causes progressive renal failure, which requires dialysis or kidney transplantation. No other effective treatment is available.

To test whether stopping cilia formation causes PKD, researchers created knockout mice missing the gene Kif3, specifically in the kidneys. That gene codes for a motor protein that’s critical in cilia formation and maintenance. Researchers created kidney-specific knockouts because cilia are essential for embryonic development.

The knockout mice had normal kidneys at birth, but researchers found that kidney cysts began to develop about five days later and caused renal failure after about three weeks. Dissection by day 35 showed enlarged kidneys with multiple, fluid-filled cysts that had characteristics similar to cysts found in PKD.

"We are trying to understand the mechanism of cyst formation," said Dr. Fangming Lin, assistant professor of pediatrics and lead author of the study. "Once you understand the mechanism we will have the target to prevent or slow the cyst formation.

"That could eventually lead to a treatment of human polycystic disease."

Other UT Southwestern researchers who worked on the study were Dr. Thomas Hiesberger, assistant professor of internal medicine, and Kimberly Cordes, research assistant. Researchers from Yale University School of Medicine and the University of California, San Diego, School of Medicine also contributed to the study, which was funded by the National Institute of Diabetes and Digestive and Kidney Diseases.


###
To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://lists.utsouthwestern.edu/mailman/listinfo/utswnews


Staishy Bostick Siem | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>