Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defect of cilia-assembly protein could cause most common genetic cause of kidney failure

01.04.2003


A protein responsible for the assembly of cell cilia – the hair-like projections from cells – may cause polycystic kidney disease, the most common genetic cause of kidney failure, according to a new study at UT Southwestern Medical Center at Dallas.



The study, which will be published online this week and will appear in a future edition of the Proceedings of the National Academy of Sciences, is the first to directly test the role of cilia in polycystic kidney disease. Previous studies have hinted at a possible link, said Dr. Peter Igarashi, chief of nephrology at UT Southwestern and senior author of the study.

"For a long time, renal cilia have been thought to be unimportant organelles," said Igarashi. "This study and others before it have renewed the interest in what cilia are doing normally and also how abnormalities in cilia cause disease."


Polycystic kidney disease (PKD) afflicts about one in every 500 people and causes fluid-filled cysts to accumulate in the kidney, liver and other organs. Formation of the cysts causes progressive renal failure, which requires dialysis or kidney transplantation. No other effective treatment is available.

To test whether stopping cilia formation causes PKD, researchers created knockout mice missing the gene Kif3, specifically in the kidneys. That gene codes for a motor protein that’s critical in cilia formation and maintenance. Researchers created kidney-specific knockouts because cilia are essential for embryonic development.

The knockout mice had normal kidneys at birth, but researchers found that kidney cysts began to develop about five days later and caused renal failure after about three weeks. Dissection by day 35 showed enlarged kidneys with multiple, fluid-filled cysts that had characteristics similar to cysts found in PKD.

"We are trying to understand the mechanism of cyst formation," said Dr. Fangming Lin, assistant professor of pediatrics and lead author of the study. "Once you understand the mechanism we will have the target to prevent or slow the cyst formation.

"That could eventually lead to a treatment of human polycystic disease."

Other UT Southwestern researchers who worked on the study were Dr. Thomas Hiesberger, assistant professor of internal medicine, and Kimberly Cordes, research assistant. Researchers from Yale University School of Medicine and the University of California, San Diego, School of Medicine also contributed to the study, which was funded by the National Institute of Diabetes and Digestive and Kidney Diseases.


###
To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://lists.utsouthwestern.edu/mailman/listinfo/utswnews


Staishy Bostick Siem | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>