Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU scientists define adult stem cell healing abilities

31.03.2003


Research reveals how bone marrow-derived stem cells can be transformed into cells for the treatment of liver disease



Researchers at Oregon Health & Science University (OHSU) have explained how adult stem cells can heal diseased liver tissue. The research helps direct scientists in the quest for therapeutic uses of adult stem cells, which are derived from bone marrow. The research may also help define the therapeutic limits of these stem cells. The study results will be released online March 30 prior to being published in the journal Nature. The research was conducted in collaboration with Texas Children’s Hospital and Stem Cells Inc.

"Using mouse models, this research demonstrated that bone marrow-derived stem cells can combine with liver cells through a method known as cell fusion," explained Markus Grompe, M.D., a professor of molecular and medical genetics, and pediatrics in the OHSU School of Medicine. "This differs from earlier theories that adult stem cells can somehow be ’transformed’ into other cell types. The finding represents an important clarification on how adult stem cells can be transformed into therapeutically useful cells, capable of treating various diseases.


Cell fusion occurs when two or more cells combine to form one cell. The resulting cells contain more genetic material than normal. In a mouse model, for instance, fused liver cells may contain 80 chromosomes, double the amount found in a normal mouse liver cell.

To study the use of adult stem cells in treating liver disease, scientists at OHSU used a mouse model for a genetic disease called tyrosinemia, which causes severe liver damage. The research team used purified adult stem cells to treat these animals. While the transplanted cells resulted in a reversal of the liver damage, this reversal took place through cell fusion, not cell transformation.

Many recent reports have indicated that bone marrow stem cells can turn into other tissues such as brain, spinal cord, lung, intestine, pancreas or heart muscle. Although the OHSU research to date has demonstrated cell fusion only in liver, it is likely that cell fusion is responsible for many of these other cases of stem cell flexibility. The liver is able to heal using these cells. However, it’s possible that abnormal fused cells would not function in other regions of the body.

"While this research may help shift the focus of adult stem cell research, we also believe it’s a major step forward in utilizing stem cells to regenerate healthy liver cells in humans with liver disease," Grompe said. "The next step in this line of research would be to investigate whether there is a way to induce cell fusion, or speed up the fusion process, which is naturally quite slow and inefficient."

These results may also have applications in research for the burgeoning area of gene therapy. Scientists believe cell fusion may be a practical method for introducing new genetic material to correct mutated or malfunctioning genes that cause disease.


The National Institute of Diabetes and Digestive and Kidney Diseases, a component of the National Institutes of Health, funded this research.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>