Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome analysis sheds light on drug-resistant pathogen

28.03.2003


Mobile DNA’s role in vancomycin resistance of Enterococcus faecalis



‘Jumping’ elements of DNA have enabled the bacterium Enterococcus faecalis to acquire stubborn resistance to a range of antibiotics – including a “drug of last resort” that is used against such bacterial pathogens.

That is one of the conclusions reached by scientists at The Institute for Genomic Research (TIGR), which sequenced and analyzed the complete genome of E. faecalis V583, a strain of the opportunistic pathogen that is resistant to the antibiotic vancomycin. That strain was first isolated at a St. Louis hospital in 1987.


The results of this work, supported by the National Institute of Allergy and Infectious Diseases (NIAID), are published in a paper in this week’s issue of Science.

Ian Paulsen, Ph.D., the TIGR researcher who is the first author of the Science paper, says the genome analysis found that “mobile elements” – small segments of DNA that can jump between organisms or their chromosomes – appear to play an important role in helping the bacterium quickly develop drug resistance.

The TIGR analysis found that nearly a third of the E. faecalis genome – which encompasses more than 3.2 million DNA base pairs – consists of mobile or ‘foreign’ DNA “That’s an unusually high percentage of mobile elements in a microbial genome,” said Paulsen.

Those mobile elements include three plasmids in the bacterium and multiple remnants of phage, plasmids, and other mobile elements, including transposons and a pathogenicity island located on its single chromosome. Scientists identified two sites in the genome that are related to vancomycin resistance or tolerance.

One of those sites, Paulsen said, appears to be a newly-identified vancomycin resistance transposon, carrying vanB resistance genes. A transposon is a mobile element that can “jump” from one part of a chromosome to another, or from a chromosome in one organism to that of another organism – sometimes carrying along genes that encode for drug-resistance. In the case of vanB, the encoded genes allow the bacterium to alter its cell wall structure to prevent vancomycin from damaging it.

“It’s clear that Enterococcus’s ability to acquire mobile elements has significantly contributed to its drug resistance,” says Paulsen. “The vancomycin resistance is found on a mobile element in the genome.”

TIGR’s president and director, Claire M. Fraser, Ph.D., says the deciphered Enterococcus genome will provide an important tool for biomedical researchers. “The identification of a novel vancomycin-resistant transposon in E. faecalis demonstrates the power of genomics to reveal new insights into the biology of important human pathogens,” Fraser says. “This information is critically important in the search for new antibiotics and vaccines to combat infections diseases.”

E. faecalis lives in the gastrointestinal tracts of humans and animals and is often found in soil, sewage, water and food as a result of fecal contamination. While the bacterium is normally symbiotic in the human gut – causing no harm – it can cause serious infections when other tissues are exposed to the bacterium. Those maladies include infective endocarditis, bacteremia, and urinary tract infections.

Physicians often use vancomycin to treat opportunistic E. faecalis infections if other drugs fail to slow their progress. But the growing number of bacterial strains that are resistant to such antibiotics has made it more difficult for physicians to treat those infections effectively.

An even greater concern is that E. faecalis has been found to act as a “reservoir” for vancomycin resistance. Other researchers already have observed how resistance to vancomycin can be transferred from E. faecalis to more aggresively pathogenic bacteria such as Staphylococcus aureus. That transferral of drug resistance has become a major concern for physicians around the globe.


The Institute for Genomic Research (TIGR) is a not-for-profit research institute based in Rockville, Maryland. TIGR, which sequenced the first complete genome of a free-living organism in 1995, has been at the forefront of the genomic revolution since the institute was founded in 1992 and is a leading center for microbial genomics. TIGR conducts research involving the structural, functional, and comparative analysis of genomes and gene products in viruses, bacteria, archaea, and eukaryotes.

Additional Contact:
Ian Paulsen, Ph.D., Assistant Investigator, TIGR
(301) 838-3531 or ipaulsen@tigr.org


Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>