Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new breast cancer gene

27.03.2003


Scientists at Tularik Inc. (NASDAQ: TLRK) and Cold Spring Harbor Laboratory have discovered a new gene that is expressed at abnormally high levels in nearly 50% of the breast cancer specimens they examined, and is similarly overexpressed in a large proportion of lung cancers (35%).



The discovery of the gene, called KCNK9, is significant for several reasons:

1) KCNK9 reveals a previously unrecognized mechanism for oncogene action (namely, potassium channels).


2) KCNK9 is an attractive target for the development of novel cancer therapies.

3) The experimental overproduction of KCNK9 promotes tumor formation in controlled functional tests. This finding supports the notion that the overexpression of KCNK9 observed in breast and lung tumor biopsies plays a bona fide role in these cancers.

The study is also significant because it focussed on sporadic or non-heritable forms of breast cancer. Sporadic disease accounts for greater than 90% of all breast and other cancers, in contrast to heritable forms of cancer, which account for a relatively small percentage of the disease.

The study is published in the March 2003 issue of Cancer Cell and was funded in part by 1 in 9: The Long Island Breast Cancer Action Coalition. A copy of the study and illustrations are available on request.

The principle investigator is Scott Powers (Tularik Inc. Genomics Division and Adjunct Faculty member at CSHL). Other key contributors were the lead author David Mu of Tularik, and Michael Wigler, W. Richard McCombie, Scott Lowe, and their colleagues at CSHL.

The scientists used a gene discovery method pioneered by Michael Wigler and his colleagues at Cold Spring Harbor Laboratory (called Representational Difference Analysis or RDA) to detect the differences between the DNA of normal cells and breast tumors--differences that might contribute to tumor formation. This analysis identified a small region (550 kb) of human chromosome 8 that was specifically amplified in the DNA of breast tumors.

The researchers used a variety of criteria to determine that the KCNK9 gene, one of only two genes in this region of chromosome 8, plays a role in cancer. Expression of the KCNK9 gene was increased at least five-fold and up to over 100-fold above normal levels in 28 out of 64 breast cancer specimens (44%), and in 35% of lung cancer specimens examined. In contrast, expression of the KCNK9 gene was not elevated in any of the normal tissue specimens examined.

To test whether increasing KCNK9 gene expression was sufficient to trigger cells to grow in a cancerous fashion, the scientists engineered cultured cells to produce increased levels of the KCNK9 protein. Then they examined whether such cells formed tumors when injected into mice more readily than when cells with normal levels of KCNK9 protein were injected into mice.

The results were clear: Tumors formed in 3 out of 5 mice within three months after they were injected with cells overexpressing KCNK9. In contrast, none of 5 mice injected with cells expressing normal levels of KCNK9 formed tumors.

This finding indicated that elevated KCNK9 levels are sufficient to trigger the cancerous growth of at least some cell types.

Dr. Wigler has previously used the RDA gene discovery method to identify a number of genes associated with sporadic breast cancer, including the tumor suppressors PTEN and DBC2. KCNK9 is the first oncogene to be unambiguously identified by using RDA, and may play a major role in the development of breast, lung, and other cancers.

Annual U.S. morbidity and mortality due to breast cancer are 200,000 and 40,000 people, respectively.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>