Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene responsible for developmental disorder identified

24.03.2003


Discovery could lead to new therapies for Smith-Magenis Syndrome



Researchers at Michigan State University have identified the gene responsible for a developmental disorder known as Smith-Magenis syndrome (SMS), a discovery that could lead to new therapies for the disorder and the myriad problems that accompany it.
The finding is documented in the March 24 issue of Nature Genetics, a prestigious peer-reviewed British journal.

SMS is a chromosome microdeletion syndrome that is characterized by a very distinct series of physical, developmental and behavioral features, including varying levels of mental retardation, cranio-facial abnormalities, sleep disturbances and self-injurious behaviors.



Because the disease is manifested in so many ways and is associated with a chromosomal deletion that includes many genes, it was always assumed that more than one gene contributed to the disorder, said researcher Sarah Elsea.

"This disorder was assumed to be a contiguous gene syndrome," said Elsea, an assistant professor in the departments of Pediatrics and Human Development and Zoology. "However, our data show that primarily one gene contributes to the phenotype."

What Elsea and colleagues found was mutation on a gene – identified as retionic acid induced 1 (RAI1) – that prevents the production of normal protein from that gene.

"The result of this mutation is that the protein can’t be formed properly," she said. "Individuals with SMS have one normal functioning RAI1 protein from one chromosome, but from the other chromosome they are not getting this protein function at all."

Because SMS is a sporadic genetic disorder, prevention is pretty much out of the question, Elsea said. However, early diagnosis of the disorder can lead to improved outcomes.

"I think that in the future, if we understand what this gene, this protein, does and how it interacts with other proteins in the cell, we might be able to develop some kind of drug therapy that might help deal with the behaviors a little better," she said. "Early diagnosis is beneficial because the child needs the most appropriate early interventions."

Elsea said it’s also very important for parents of SMS children to have a diagnosis.

"They need to know that it’s not something that is preventable," she said. "Parents are sometimes blamed for the abilities or inabilities of their children and that’s unfortunate. A proper diagnosis is crucial for the well-being of the family."

It is estimated that SMS occurs in one of every 25,000 births.

"We’re hopeful this study could have wider-ranging effects on the study of sleep disorders and other behavioral problems, as well as provide more insight into early development of the fetus," Elsea said.

Contributing to the research were Rebecca Slager and Christopher Vlangos, doctoral students in the MSU Genetics Program; Tiffany Lynn Newton, a junior in MSU’s Howard Hughes Undergraduate Research Support Program; and Brenda Finucane of the Elwyn Training and Research Institute of Elwyn, Pa.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>