Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene responsible for developmental disorder identified

24.03.2003


Discovery could lead to new therapies for Smith-Magenis Syndrome



Researchers at Michigan State University have identified the gene responsible for a developmental disorder known as Smith-Magenis syndrome (SMS), a discovery that could lead to new therapies for the disorder and the myriad problems that accompany it.
The finding is documented in the March 24 issue of Nature Genetics, a prestigious peer-reviewed British journal.

SMS is a chromosome microdeletion syndrome that is characterized by a very distinct series of physical, developmental and behavioral features, including varying levels of mental retardation, cranio-facial abnormalities, sleep disturbances and self-injurious behaviors.



Because the disease is manifested in so many ways and is associated with a chromosomal deletion that includes many genes, it was always assumed that more than one gene contributed to the disorder, said researcher Sarah Elsea.

"This disorder was assumed to be a contiguous gene syndrome," said Elsea, an assistant professor in the departments of Pediatrics and Human Development and Zoology. "However, our data show that primarily one gene contributes to the phenotype."

What Elsea and colleagues found was mutation on a gene – identified as retionic acid induced 1 (RAI1) – that prevents the production of normal protein from that gene.

"The result of this mutation is that the protein can’t be formed properly," she said. "Individuals with SMS have one normal functioning RAI1 protein from one chromosome, but from the other chromosome they are not getting this protein function at all."

Because SMS is a sporadic genetic disorder, prevention is pretty much out of the question, Elsea said. However, early diagnosis of the disorder can lead to improved outcomes.

"I think that in the future, if we understand what this gene, this protein, does and how it interacts with other proteins in the cell, we might be able to develop some kind of drug therapy that might help deal with the behaviors a little better," she said. "Early diagnosis is beneficial because the child needs the most appropriate early interventions."

Elsea said it’s also very important for parents of SMS children to have a diagnosis.

"They need to know that it’s not something that is preventable," she said. "Parents are sometimes blamed for the abilities or inabilities of their children and that’s unfortunate. A proper diagnosis is crucial for the well-being of the family."

It is estimated that SMS occurs in one of every 25,000 births.

"We’re hopeful this study could have wider-ranging effects on the study of sleep disorders and other behavioral problems, as well as provide more insight into early development of the fetus," Elsea said.

Contributing to the research were Rebecca Slager and Christopher Vlangos, doctoral students in the MSU Genetics Program; Tiffany Lynn Newton, a junior in MSU’s Howard Hughes Undergraduate Research Support Program; and Brenda Finucane of the Elwyn Training and Research Institute of Elwyn, Pa.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>