Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deceptive Strategy Shields HIV from Destruction

20.03.2003


Howard Hughes Medical Institute researchers and their colleagues have discovered one way in which the human immunodeficiency virus (HIV) wins its cat-and-mouse game with the body’s immune system.



The study, published in the March 20, 2003, issue of the journal Nature, shows that HIV-1, a common strain of the virus that causes AIDS, uses a strategy not seen before in other viruses to escape attack by antibodies, one of the immune system’s prime weapons against invading viruses and bacteria.

Viruses typically vary the protein sequence, or epitope, of the viral envelope that acts as a docking station for antibodies. This variation alters the docking region on the virus and prevents antibodies from grabbing hold and targeting the virus for destruction. HIV-1, in contrast, continuously changes the arrangement of large sugar molecules studded across its gp120/41 protein coat so that those docking regions for antibodies are obstructed.


The research team, led by Howard Hughes Medical Institute investigator George M. Shaw at the University of Alabama at Birmingham (UAB), dubbed the mechanism an evolving "glycan shield," and said the discovery was a surprise. Shaw and his colleagues were just as surprised at the rapidity and extent to which the replicating virus population in infected patients escaped antibody recognition.

"Before these findings, the role of antibodies in combating the virus that causes AIDS was not altogether clear. The new data suggest a more active role for HIV-1-neutralizing antibodies in virus containment and an unexpected mechanism of virus escape,” he said.

"We found that the neutralizing epitopes on the virus did not change, but instead other parts of the viral envelope mutated, generally in a way that altered specific amino acids to which carbohydrates normally attach," Shaw said. "These changes in glycan molecules prevent the binding of neutralizing antibodies to the virus surface through steric inhibition, thereby enabling the virus to avoid antibody-mediated elimination."

The findings show that the immune system does try to fight HIV, and they offer a reason why the virus often wins the battle, he said. "The glycan shield mutates at a faster rate than the immune system can change in order to keep up."

Despite the resourcefulness of the virus, Shaw said there is hope for the development of an effective vaccine to protect those people who are currently uninfected but at risk of becoming infected. "While neutralizing antibodies are obviously unable to completely eliminate HIV-1 from infected patients, the fact that they are sufficiently potent as to result in the sequential elimination of one virus population after another suggested that if uninfected patients were vaccinated against HIV-1 with an appropriate immunogen, then neutralizing antibodies in this setting could conceivably have a far greater impact," he said.

Better yet, Shaw said, may be the idea of combining an immunogen that elicits neutralizing antibodies with other components of the human immune system, including cytotoxic T-lymphocytes.

In the course of their work, Shaw and his colleagues developed a new strategy for detecting HIV-1 antibodies that prevent entry of the virus into human cells. The investigators reasoned that since variants of HIV-1 that are resistant to antiretroviral drugs can be detected in the bloodstream of AIDS patients, if neutralizing antibodies were present and did affect virus replication in vivo, then by testing patients for strains of the virus that had become resistant to antibodies, they could infer their presence and their biological activity.

Using a modification of a laboratory assay that they had developed previously to test for viral drug resistance, the investigators demonstrated that not only were HIV-1-neutralizing antibodies present, but they were potent enough to completely eliminate sensitive strains of the virus from the bloodstream of patients in a matter of weeks. The bad news is that these “weaker” strains were replaced by successive strains of the virus that were resistant to each new battery of neutralizing antibodies.

The researchers next examined the genetic changes in HIV-1 that resulted in the neutralization-resistant phenotype and discovered mutations in the viral envelope that caused changes in the attachment of the glycan molecules.

The discovery extends a picture of a virus that contains a "silent face" composed of masses of large glycan molecules that obscure its true nature to the immune system. However, in order for HIV-1 to engage CD4 cells, part of its attack machinery, including its receptor-binding surface and projecting variable loops, must remain accessible to cellular receptors for the virus. The evolving glycan shield, together with other mechanisms of antibody avoidance, contributes to this process, Shaw said.

When the virus initially infects a person without immunity to HIV, it is able to grow unrestricted until the first set of antibodies develops that recognizes proteins within or protruding from holes in the shield. But by then, the virus has randomly mutated its glycan shield, as well as other regions of the envelope, to uncover different working areas, conferring a strong survival advantage to viral particles that cannot now be "seen" by antibodies, which also change their structure in pursuit of the virus. But the cat (the immune system) cannot keep up with the wily mouse (the virus), Shaw said.

The virus "changes its silent face around in such a way that these large sugar molecules occlude new antibodies that develop in the patient. In this way, the virus maintains the ability to prevent each successive round of evolving antibodies from attaching," he said. Shaw emphasized that the evolving glycan-shield mechanism of antibody escape, although new, is but one of several mechanisms available to HIV-1 that allow for viral persistence in the face of an evolving antibody repertoire. “The trick,” he suggested, “will be to understand these multiple mechanisms more fully and to find the Achilles’ heel. We are not there yet.”

Other researchers working with Shaw included Peter Kwong at the National Institutes of Health Vaccine Research Center; Princeton University investigators Natalia Komarova and Martin Nowak; and UAB investigators Xiping Wei, Julie Decker, Shuyi Wang, Huixong Hui, Jesus Salazar-Gonzalez, Maria Salazar, Michael Saag, J. Michael Kilby, John Kappes, Xiaoyun Wu, and Beatrice Hahn.

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/shaw2.html

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>