Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body hormone ghrelin, a food intake and weight gain influence, is found to promote sleep

19.03.2003


New study may have implications for millions in search of the elusive “good night’s sleep”

In movies and novels alike, much is made of the stage of sleep known as rapid eye movement (REM), since this is the phase of slumber in which dreams (good, bad, exotic) occur. Among the medical community, there is an increased appreciation for what is called “slow-wave” sleep, (also known as deep or delta-wave sleep), because this fourth stage of sleep can be difficult to attain. If one is awakened during the first three stages of sleep, they must repeat these stages again before reaching fourth stage or “delta-wave,” sleep.

Once this latter stage is reached, muscles are relaxed, blood pressure drops, and the pulse and breathing are slower. According to the Sleep Research Center, other benefits to the body are accrued during slow-wave sleep, including: an increase of blood supply to the body; a decrease in body temperature thus preserving energy; a lowering of metabolic activity enabling tissue repair and growth; an increase of natural immune-system modulators; and a period in which the growth hormone secretions reach their peak, thus stimulating body growth and development.



A New Study

A team of researchers has found that the peptide hormone ghrelin, bound to the growth hormone secretagogue (GHS) receptor, has a distinct positive action on stage four sleep and nocturnal hormone secretion. Their findings suggest that, in addition to its influence on growth hormone secretion, food intake, and weight gain, ghrelin is a sleep-promoting factor. This new role for the peptide appears to be complementary in function to its established function in the regulation of energy balance and obesity.

Previous rat studies offered conflicting data on sleep following ghrelin administration. In one study, a decrease of REM sleep was found after administration of ghrelin to rats. In another study, ghrelin was given to two different strains of mice, intact animals and those with nonfunctional growth hormone-releasing hormone receptors. Only in mice with intact growth hormone-releasing hormone receptors did NREM sleep increase after administration of the peptide.

Prior to this research, the influence of ghrelin on human sleep was unknown. A team of German researchers selected a protocol that followed previous studies on the sleep-endocrine effects of the peptide, including growth hormone-releasing hormone, GHRP-6, hexarelin, and vasoactive intestinal peptide (VIP). They investigated the effects of the systematic administration of ghrelin on sleep EEG and of GH, ACTH, cortisol, and leptin in healthy male subjects. The authors of “Ghrelin Promotes Slow-Wave Sleep in Humans” are J. C. Weikel, A. Wichniak, M. Ising, H. Brunner, E. Friess, K. Held, S. Mathias, D. A. Schmid, M. Uhr, and A. Steiger, all from the Max Planck Institute of Psychiatry, Department of Psychiatry, Munich, Germany. Their findings appear in the February 2003 edition of the American Journal of Physiology-Endocrinology and Metabolism.

Methodology

Subjects in this study were healthy male volunteers, all free of alcohol, tobacco, and caffeine abuse. The sleep-endocrine studies consisted of two sessions, separated by one week in which a placebo (saline) or ghrelin was administered according to a double-blind, randomized schedule. The experimental sessions consisted of two successive nights in the sleep laboratory. The first night allowed adaptation to the laboratory setting. On the second night, a dose of ghrelin or placebo was administered as a bolus injection through an indwelling intravenous catheter, which permitted administration of the testing drug and repeated blood collection in the adjacent laboratory without disturbing the study subject.

All subjects were reclining at 8:00 PM. Injections of ghrelin or placebo were given hourly between 10:00 PM and 1:00 AM. Blood samples were collected every 30 minutes between 8:00 and 10:00 PM, and every 20 minutes between 10:00 PM and 7:00 AM. The subjects were not allowed to sleep until the lights were turned off at 11:00 PM. Polysomnographic recordings were obtained from 11:00 PM to 7:00 AM, and consisted of two EEGs, vertical and horizontal electroculograms, and electromyogram. A hormone analysis was conducted with the drawn blood samples.

Results

On the night of ghrelin administration, the time spent in slow-wave or stage IV sleep increased significantly compared with the placebo night. Separate inspections of the three sleep-time segments showed significant increases of slow-wave sleep during the first and second thirds of the night but not during the last third. REM sleep showed a significant decrease only during the second third of the night. Intermittent wakefulness appeared to decrease, although it did not reach a level of significance. All other sleep continuity and sleep architecture variables remained unchanged.

Conclusions

This study finds that the body’s endocrine system may offer a means for the body to obtain deep sleep, that which contributes to the body’s overall health. These findings could have important implications for long-term health, since the pursuit of a “good night’s sleep” is an obsession for many Americans.



Source: February 2003 edition of the American Journal of Physiology-Endocrinology and Metabolism.

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Donna Krupa | APS
Further information:
http://www.the-aps.org/press_room/journal/pr3-17-2.htm

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>