Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of monkey species that fights off AIDS may lead to new treatments for humans

18.03.2003


A deactivation of the immune system in patients infected with HIV could be one way to inhibit progression to the immunodeficiency diseases associated with AIDS, researchers from UT Southwestern Medical Center at Dallas and Emory University report.



A study comparing the effects of immunodeficiency virus in humans to its effects in sooty mangabey monkeys, which do not become ill when infected, revealed two major differences in the monkeys’ responses to the infection. The findings could open the door to groundbreaking approaches to AIDS treatments, said Dr. Donald Sodora, an assistant professor of internal medicine at UT Southwestern who contributed to the study.

The findings are being published online today at www.immunity.com and will appear in a future edition of Immunity.


"The mangabeys have just as much virus in their system as during pathogenic HIV infection of humans. The riddle is, they don’t get sick," Sodora said. "The idea is, you look at the monkeys and you try to unravel that riddle. And as you unravel it, you can begin to develop new and innovative ideas that have not been explored by others for preventing the progression of AIDS in HIV-infected patients."

Mangabeys exposed to long-term, high-levels of SIV – the version of immunodeficiency virus found in primates – remain healthy and free of any sign of immune deficiency. Researchers found that this lack of symptoms occurred because, unlike humans, these primates have only low-level immune system responses when infected with SIV and do not lose their ability to make new T cells.

T cells, a cornerstone of the immune system, assist other immune cells in eliminating infection. SIV infection in primates and HIV infection in humans both cause a depletion of these cells.

In contrast to the mangabeys, humans infected with HIV respond with an aberrant activation of the immune system that leads to further destruction of these cells. This depletion is then compounded by the inability of the infected individual to adequately replace the T cells, Sodora said.

"What we call AIDS is actually a combination of the direct effects of HIV replication and the indirect effects brought about by the immune system dysregulation," he said. "In contrast, the absence of the indirect effects in the SIV infected mangabeys can at least be partially attributed to a reduced activation of the immune system, and an ability to maintain continued renewal of T cells."

These findings influence the way in which one might think about treating an AIDS patient or developing a therapy for AIDS, Sodora said.

"It has relevance with regard to how we think about people getting sick with AIDS," he said. "One potential treatment might be an approach to deactivate the immune system, in a very strategic and careful way."

HIV and AIDS began to be identified in the mid-1980s. The virus had been transmitted to humans from primates among which SIV is prevalent. The two types of HIV that exist today originated from two variations of SIV present in chimpanzees (HIV-1) and mangabeys (HIV-2). In both species of primates, the host becomes infected with SIV and replicates the virus in its own T cells, but does not become ill.

Dr. Richard Koup, former chief of infectious diseases at UT Southwestern who is now at the National Institutes of Health Vaccine Research Center, and researchers Guido Silvestri and Mark Feinberg of Atlanta’s Emory University School of Medicine also contributed to the NIH-funded study.

Rachel Horton | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>