Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of monkey species that fights off AIDS may lead to new treatments for humans

18.03.2003


A deactivation of the immune system in patients infected with HIV could be one way to inhibit progression to the immunodeficiency diseases associated with AIDS, researchers from UT Southwestern Medical Center at Dallas and Emory University report.



A study comparing the effects of immunodeficiency virus in humans to its effects in sooty mangabey monkeys, which do not become ill when infected, revealed two major differences in the monkeys’ responses to the infection. The findings could open the door to groundbreaking approaches to AIDS treatments, said Dr. Donald Sodora, an assistant professor of internal medicine at UT Southwestern who contributed to the study.

The findings are being published online today at www.immunity.com and will appear in a future edition of Immunity.


"The mangabeys have just as much virus in their system as during pathogenic HIV infection of humans. The riddle is, they don’t get sick," Sodora said. "The idea is, you look at the monkeys and you try to unravel that riddle. And as you unravel it, you can begin to develop new and innovative ideas that have not been explored by others for preventing the progression of AIDS in HIV-infected patients."

Mangabeys exposed to long-term, high-levels of SIV – the version of immunodeficiency virus found in primates – remain healthy and free of any sign of immune deficiency. Researchers found that this lack of symptoms occurred because, unlike humans, these primates have only low-level immune system responses when infected with SIV and do not lose their ability to make new T cells.

T cells, a cornerstone of the immune system, assist other immune cells in eliminating infection. SIV infection in primates and HIV infection in humans both cause a depletion of these cells.

In contrast to the mangabeys, humans infected with HIV respond with an aberrant activation of the immune system that leads to further destruction of these cells. This depletion is then compounded by the inability of the infected individual to adequately replace the T cells, Sodora said.

"What we call AIDS is actually a combination of the direct effects of HIV replication and the indirect effects brought about by the immune system dysregulation," he said. "In contrast, the absence of the indirect effects in the SIV infected mangabeys can at least be partially attributed to a reduced activation of the immune system, and an ability to maintain continued renewal of T cells."

These findings influence the way in which one might think about treating an AIDS patient or developing a therapy for AIDS, Sodora said.

"It has relevance with regard to how we think about people getting sick with AIDS," he said. "One potential treatment might be an approach to deactivate the immune system, in a very strategic and careful way."

HIV and AIDS began to be identified in the mid-1980s. The virus had been transmitted to humans from primates among which SIV is prevalent. The two types of HIV that exist today originated from two variations of SIV present in chimpanzees (HIV-1) and mangabeys (HIV-2). In both species of primates, the host becomes infected with SIV and replicates the virus in its own T cells, but does not become ill.

Dr. Richard Koup, former chief of infectious diseases at UT Southwestern who is now at the National Institutes of Health Vaccine Research Center, and researchers Guido Silvestri and Mark Feinberg of Atlanta’s Emory University School of Medicine also contributed to the NIH-funded study.

Rachel Horton | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>