Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop first mouse model of epithelial ovarian cancer

17.03.2003


Fox Chase Cancer Center researchers and their colleagues have developed a mouse model of the most prevalent and deadly form of human ovarian cancer -- epithelial ovarian cancer. The mouse model provides a better opportunity to study the cause of ovarian cancer, examine the genes involved and test preventive, diagnostic and treatment approaches that could be applied to human ovarian cancer.



"These transgenic mice offer us a valuable scientific tool that never before has been available to ovarian cancer researchers," explained Fox Chase Cancer Center’s Denise C. Connolly, Ph.D., corresponding author of the study, which appears in the March 15, 2003, issue of Cancer Research, a journal of the American Association for Cancer Research.

The mice engineered by Connolly and her colleagues develop epithelial ovarian cancer in both ovaries. This cancer arises in the surface, or epithelial, cells of the ovaries. The mouse model was made by introducing a genetically engineered DNA fragment into fertilized mouse eggs prior to their embryonic development. The fragment is a combination of a gene specific promoter and a potent oncogene. The oncogene, Simian virus 40 T antigen, triggers cancer development. The promoter is derived from a gene (Mullerian inhibitory substance type II receptor) that signals the expression of a specific protein found in cells covering the ovaries.


"It was critical to attach the oncogene to a regulator that would limit the cancer-causing gene’s expression to the ovary, including the epithelial ovarian cells," explained Connolly. "Using this strategy, we have generated transgenic animals that develop epithelial ovarian cancer that spreads to the peritoneal organs, similar to human epithelial ovarian cancers."

In humans, epithelial ovarian cancer is diagnosed in approximately 23,000 women each year. In 2003, it is estimated that 14,000 women will die of the disease, making it the fifth most common cancer in women in the United States.

Early detection of these tumors is challenging because there is no standard screening available for the disease. When ovarian cancer is diagnosed at early stages, the survival rate approaches 90 percent. However, the vast majority of cases of ovarian cancer are not identified until late stages, when the survival rate drops to only 30 to 40 percent.

"The development of mouse models of epithelial ovarian cancer may significantly facilitate advances in early detection and treatment of the disease," said Thomas C. Hamilton, Ph.D., senior member of the medical science division at Fox Chase Cancer Center and leader of the ovarian cancer research program. "Models such as this are critical to cancer research because they will allow us to study the progression of ovarian cancer from the very earliest stages to advanced disease.

"The next step is to test chemotherapeutic and chemopreventive agents that we hope will translate into meaningful improvements in the prevention and treatment of ovarian cancer. We’ll also study the relevant oncogenes and tumor-suppressor genes for their ability to allow or trigger the cancer to develop," Hamilton added.

Other contributing researchers include Rudi Bao, M.D., Kasie C. Stephens, Timothy W. Poole, Ph.D., Xiang Hua and Skye S. Harris of Fox Chase Cancer Center; Alexander Yu. Nikitin, M.D., Ph.D., of Cornell University; and Barbara C. Vanderhyden, Ph.D., of the University of Ottawa.

Funding for this research is provided in part by a grant from the National Cancer Institute’s Mouse Models of Human Cancers Consortium (MMHCC), of which Hamilton is a member. Mouse models that recapitulate many aspects of the genesis, progression and clinical course of human cancers are valuable resources to cancer researchers engaged in a variety of basic, translational, clinical and epidemiological investigations.

MMHCC is a collaborative program designed to derive and characterize mouse models and to generate resources, information and innovative approaches to the application of mouse models in cancer research.



Additional grants supporting Dr., Hamilton’s research were received from the National Institutes of Health, the National Cancer Institute Specialized Program of Research Excellence for ovarian cancer, the Commonwealth of Pennsylvania, Edgar Astrove, the Adler Foundation and the Evy Lessin Fund.

Fox Chase Cancer Center, one of the nation’s first comprehensive cancer centers designated by the National Cancer Institute in 1974, conducts basic and clinical research; programs of prevention, detection and treatment of cancer; and community outreach. For more information about Fox Chase activities, visit the Center’s web site at http://www.fccc.edu or call 1-888-FOX CHASE.

Karen Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>