Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop first mouse model of epithelial ovarian cancer

17.03.2003


Fox Chase Cancer Center researchers and their colleagues have developed a mouse model of the most prevalent and deadly form of human ovarian cancer -- epithelial ovarian cancer. The mouse model provides a better opportunity to study the cause of ovarian cancer, examine the genes involved and test preventive, diagnostic and treatment approaches that could be applied to human ovarian cancer.



"These transgenic mice offer us a valuable scientific tool that never before has been available to ovarian cancer researchers," explained Fox Chase Cancer Center’s Denise C. Connolly, Ph.D., corresponding author of the study, which appears in the March 15, 2003, issue of Cancer Research, a journal of the American Association for Cancer Research.

The mice engineered by Connolly and her colleagues develop epithelial ovarian cancer in both ovaries. This cancer arises in the surface, or epithelial, cells of the ovaries. The mouse model was made by introducing a genetically engineered DNA fragment into fertilized mouse eggs prior to their embryonic development. The fragment is a combination of a gene specific promoter and a potent oncogene. The oncogene, Simian virus 40 T antigen, triggers cancer development. The promoter is derived from a gene (Mullerian inhibitory substance type II receptor) that signals the expression of a specific protein found in cells covering the ovaries.


"It was critical to attach the oncogene to a regulator that would limit the cancer-causing gene’s expression to the ovary, including the epithelial ovarian cells," explained Connolly. "Using this strategy, we have generated transgenic animals that develop epithelial ovarian cancer that spreads to the peritoneal organs, similar to human epithelial ovarian cancers."

In humans, epithelial ovarian cancer is diagnosed in approximately 23,000 women each year. In 2003, it is estimated that 14,000 women will die of the disease, making it the fifth most common cancer in women in the United States.

Early detection of these tumors is challenging because there is no standard screening available for the disease. When ovarian cancer is diagnosed at early stages, the survival rate approaches 90 percent. However, the vast majority of cases of ovarian cancer are not identified until late stages, when the survival rate drops to only 30 to 40 percent.

"The development of mouse models of epithelial ovarian cancer may significantly facilitate advances in early detection and treatment of the disease," said Thomas C. Hamilton, Ph.D., senior member of the medical science division at Fox Chase Cancer Center and leader of the ovarian cancer research program. "Models such as this are critical to cancer research because they will allow us to study the progression of ovarian cancer from the very earliest stages to advanced disease.

"The next step is to test chemotherapeutic and chemopreventive agents that we hope will translate into meaningful improvements in the prevention and treatment of ovarian cancer. We’ll also study the relevant oncogenes and tumor-suppressor genes for their ability to allow or trigger the cancer to develop," Hamilton added.

Other contributing researchers include Rudi Bao, M.D., Kasie C. Stephens, Timothy W. Poole, Ph.D., Xiang Hua and Skye S. Harris of Fox Chase Cancer Center; Alexander Yu. Nikitin, M.D., Ph.D., of Cornell University; and Barbara C. Vanderhyden, Ph.D., of the University of Ottawa.

Funding for this research is provided in part by a grant from the National Cancer Institute’s Mouse Models of Human Cancers Consortium (MMHCC), of which Hamilton is a member. Mouse models that recapitulate many aspects of the genesis, progression and clinical course of human cancers are valuable resources to cancer researchers engaged in a variety of basic, translational, clinical and epidemiological investigations.

MMHCC is a collaborative program designed to derive and characterize mouse models and to generate resources, information and innovative approaches to the application of mouse models in cancer research.



Additional grants supporting Dr., Hamilton’s research were received from the National Institutes of Health, the National Cancer Institute Specialized Program of Research Excellence for ovarian cancer, the Commonwealth of Pennsylvania, Edgar Astrove, the Adler Foundation and the Evy Lessin Fund.

Fox Chase Cancer Center, one of the nation’s first comprehensive cancer centers designated by the National Cancer Institute in 1974, conducts basic and clinical research; programs of prevention, detection and treatment of cancer; and community outreach. For more information about Fox Chase activities, visit the Center’s web site at http://www.fccc.edu or call 1-888-FOX CHASE.

Karen Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>