Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop first mouse model of epithelial ovarian cancer

17.03.2003


Fox Chase Cancer Center researchers and their colleagues have developed a mouse model of the most prevalent and deadly form of human ovarian cancer -- epithelial ovarian cancer. The mouse model provides a better opportunity to study the cause of ovarian cancer, examine the genes involved and test preventive, diagnostic and treatment approaches that could be applied to human ovarian cancer.



"These transgenic mice offer us a valuable scientific tool that never before has been available to ovarian cancer researchers," explained Fox Chase Cancer Center’s Denise C. Connolly, Ph.D., corresponding author of the study, which appears in the March 15, 2003, issue of Cancer Research, a journal of the American Association for Cancer Research.

The mice engineered by Connolly and her colleagues develop epithelial ovarian cancer in both ovaries. This cancer arises in the surface, or epithelial, cells of the ovaries. The mouse model was made by introducing a genetically engineered DNA fragment into fertilized mouse eggs prior to their embryonic development. The fragment is a combination of a gene specific promoter and a potent oncogene. The oncogene, Simian virus 40 T antigen, triggers cancer development. The promoter is derived from a gene (Mullerian inhibitory substance type II receptor) that signals the expression of a specific protein found in cells covering the ovaries.


"It was critical to attach the oncogene to a regulator that would limit the cancer-causing gene’s expression to the ovary, including the epithelial ovarian cells," explained Connolly. "Using this strategy, we have generated transgenic animals that develop epithelial ovarian cancer that spreads to the peritoneal organs, similar to human epithelial ovarian cancers."

In humans, epithelial ovarian cancer is diagnosed in approximately 23,000 women each year. In 2003, it is estimated that 14,000 women will die of the disease, making it the fifth most common cancer in women in the United States.

Early detection of these tumors is challenging because there is no standard screening available for the disease. When ovarian cancer is diagnosed at early stages, the survival rate approaches 90 percent. However, the vast majority of cases of ovarian cancer are not identified until late stages, when the survival rate drops to only 30 to 40 percent.

"The development of mouse models of epithelial ovarian cancer may significantly facilitate advances in early detection and treatment of the disease," said Thomas C. Hamilton, Ph.D., senior member of the medical science division at Fox Chase Cancer Center and leader of the ovarian cancer research program. "Models such as this are critical to cancer research because they will allow us to study the progression of ovarian cancer from the very earliest stages to advanced disease.

"The next step is to test chemotherapeutic and chemopreventive agents that we hope will translate into meaningful improvements in the prevention and treatment of ovarian cancer. We’ll also study the relevant oncogenes and tumor-suppressor genes for their ability to allow or trigger the cancer to develop," Hamilton added.

Other contributing researchers include Rudi Bao, M.D., Kasie C. Stephens, Timothy W. Poole, Ph.D., Xiang Hua and Skye S. Harris of Fox Chase Cancer Center; Alexander Yu. Nikitin, M.D., Ph.D., of Cornell University; and Barbara C. Vanderhyden, Ph.D., of the University of Ottawa.

Funding for this research is provided in part by a grant from the National Cancer Institute’s Mouse Models of Human Cancers Consortium (MMHCC), of which Hamilton is a member. Mouse models that recapitulate many aspects of the genesis, progression and clinical course of human cancers are valuable resources to cancer researchers engaged in a variety of basic, translational, clinical and epidemiological investigations.

MMHCC is a collaborative program designed to derive and characterize mouse models and to generate resources, information and innovative approaches to the application of mouse models in cancer research.



Additional grants supporting Dr., Hamilton’s research were received from the National Institutes of Health, the National Cancer Institute Specialized Program of Research Excellence for ovarian cancer, the Commonwealth of Pennsylvania, Edgar Astrove, the Adler Foundation and the Evy Lessin Fund.

Fox Chase Cancer Center, one of the nation’s first comprehensive cancer centers designated by the National Cancer Institute in 1974, conducts basic and clinical research; programs of prevention, detection and treatment of cancer; and community outreach. For more information about Fox Chase activities, visit the Center’s web site at http://www.fccc.edu or call 1-888-FOX CHASE.

Karen Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>