Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover possible new treatment for genetic diseases

14.03.2003


Scientists from Imperial College London, the University of Leicester, and Hammersmith Hospital have found a way to stop certain types of genetic diseases from occurring by modifying the way DNA is turned into proteins.



The research published in this month’s Proceedings of the National Academy of Science shows how the researchers have been able to restore proper expression of defective genes, and that this might potentially have a positive effect in genetic diseases such as spinal muscular atrophy.

The research was carried out at Imperial College London and the University of Leicester as a collaboration between Professor Francesco Muntoni and Professor Ian Eperon.


Professor Muntoni, from Imperial College London and the Hammersmith Hospital comments: “Many genetic diseases are caused by the mutation of just one or two of the 3.2 billion base pairs of DNA which comprise our genome. The technique we have developed with our colleagues at the University of Leicester allows us to correct genetic mutations which result in abnormal splicing, as it is the case for spinal muscular atrophy.”

Splicing is part of the process by which genes are converted into proteins. Large chunks of useless and meaningless sequence have accumulated in the genes of higher organisations, and the mutation of just one or two of the 3.2 billion base pairs which make up our genome can interfere with splicing.

To make proteins genes first need to be processed into RNA (ribonucleic acid). The information in the genes is broken up into islands of information called exons, which need to be stitched together, while the meaningless sequences are removed. If the sequence of an exon is changed, splicing can be disrupted, causing genetic mutations.

The researchers were able to stick the right sequences back into the exon by using short pieces of RNA (oligos), which stick to the exon of interest and had been modified to recruit signals that influence splicing. Using this novel strategy the splicing reaction can be manipulated.

This treatment was tested on cells from a patient suffering from spinal muscular atrophy. By putting these oligos into the cells, much of the protein required for the splicing process could be produced, allowing normal development of the cells.

Professor Ian Eperon from the University of Leicester adds: “Although oligos have previously been developed to block expression of genes, this research indicates that we can also use them to restore the proper expression of defective genes. As well as working in diseases with a clear genetic basis such as spinal muscular dystrophy, we are aware that other conditions such as inflammation or cancer involve changes in the splicing of normal genes and our method might allow us to reverse these and facilitate treatment of the illness.”

Spinal muscular atrophy is a serious and common disease affecting 1 in 10,000 births, resulting in mortality in babies who have the more serious form. The disease is caused by a mutation in a gene called SMN1. About 1 in 50 people have the defective version of SMN1.

Even though everyone carries a second copy of the SMN1 gene, SMN2, this does not compensate for the problem as a difference in a single base pair from SMN1 in just one exon prevents proper splicing. This novel method, that could have broad applications also in other disease, offers a new strategy to try to correct the defect that causes spinal muscular atrophy.

For further information, please contact:
Tony Stephenson
Imperial College London Press Office
Tel: +44 (0)20 7594 6712
Mobile: +44 (0)7753 739 766
E-mail: at.stephenson@imperial.ac.uk

Ather Mirza
University of Leicester Press Office
Tel: +44 (0)116 252 3335
Mobile: +44 (0)7711 927821
E-mail: pressoffice@le.ac.uk

Ather Mirza | University of Leicester

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>