Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover possible new treatment for genetic diseases

14.03.2003


Scientists from Imperial College London, the University of Leicester, and Hammersmith Hospital have found a way to stop certain types of genetic diseases from occurring by modifying the way DNA is turned into proteins.



The research published in this month’s Proceedings of the National Academy of Science shows how the researchers have been able to restore proper expression of defective genes, and that this might potentially have a positive effect in genetic diseases such as spinal muscular atrophy.

The research was carried out at Imperial College London and the University of Leicester as a collaboration between Professor Francesco Muntoni and Professor Ian Eperon.


Professor Muntoni, from Imperial College London and the Hammersmith Hospital comments: “Many genetic diseases are caused by the mutation of just one or two of the 3.2 billion base pairs of DNA which comprise our genome. The technique we have developed with our colleagues at the University of Leicester allows us to correct genetic mutations which result in abnormal splicing, as it is the case for spinal muscular atrophy.”

Splicing is part of the process by which genes are converted into proteins. Large chunks of useless and meaningless sequence have accumulated in the genes of higher organisations, and the mutation of just one or two of the 3.2 billion base pairs which make up our genome can interfere with splicing.

To make proteins genes first need to be processed into RNA (ribonucleic acid). The information in the genes is broken up into islands of information called exons, which need to be stitched together, while the meaningless sequences are removed. If the sequence of an exon is changed, splicing can be disrupted, causing genetic mutations.

The researchers were able to stick the right sequences back into the exon by using short pieces of RNA (oligos), which stick to the exon of interest and had been modified to recruit signals that influence splicing. Using this novel strategy the splicing reaction can be manipulated.

This treatment was tested on cells from a patient suffering from spinal muscular atrophy. By putting these oligos into the cells, much of the protein required for the splicing process could be produced, allowing normal development of the cells.

Professor Ian Eperon from the University of Leicester adds: “Although oligos have previously been developed to block expression of genes, this research indicates that we can also use them to restore the proper expression of defective genes. As well as working in diseases with a clear genetic basis such as spinal muscular dystrophy, we are aware that other conditions such as inflammation or cancer involve changes in the splicing of normal genes and our method might allow us to reverse these and facilitate treatment of the illness.”

Spinal muscular atrophy is a serious and common disease affecting 1 in 10,000 births, resulting in mortality in babies who have the more serious form. The disease is caused by a mutation in a gene called SMN1. About 1 in 50 people have the defective version of SMN1.

Even though everyone carries a second copy of the SMN1 gene, SMN2, this does not compensate for the problem as a difference in a single base pair from SMN1 in just one exon prevents proper splicing. This novel method, that could have broad applications also in other disease, offers a new strategy to try to correct the defect that causes spinal muscular atrophy.

For further information, please contact:
Tony Stephenson
Imperial College London Press Office
Tel: +44 (0)20 7594 6712
Mobile: +44 (0)7753 739 766
E-mail: at.stephenson@imperial.ac.uk

Ather Mirza
University of Leicester Press Office
Tel: +44 (0)116 252 3335
Mobile: +44 (0)7711 927821
E-mail: pressoffice@le.ac.uk

Ather Mirza | University of Leicester

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>