Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover possible new treatment for genetic diseases

14.03.2003


Scientists from Imperial College London, the University of Leicester, and Hammersmith Hospital have found a way to stop certain types of genetic diseases from occurring by modifying the way DNA is turned into proteins.



The research published in this month’s Proceedings of the National Academy of Science shows how the researchers have been able to restore proper expression of defective genes, and that this might potentially have a positive effect in genetic diseases such as spinal muscular atrophy.

The research was carried out at Imperial College London and the University of Leicester as a collaboration between Professor Francesco Muntoni and Professor Ian Eperon.


Professor Muntoni, from Imperial College London and the Hammersmith Hospital comments: “Many genetic diseases are caused by the mutation of just one or two of the 3.2 billion base pairs of DNA which comprise our genome. The technique we have developed with our colleagues at the University of Leicester allows us to correct genetic mutations which result in abnormal splicing, as it is the case for spinal muscular atrophy.”

Splicing is part of the process by which genes are converted into proteins. Large chunks of useless and meaningless sequence have accumulated in the genes of higher organisations, and the mutation of just one or two of the 3.2 billion base pairs which make up our genome can interfere with splicing.

To make proteins genes first need to be processed into RNA (ribonucleic acid). The information in the genes is broken up into islands of information called exons, which need to be stitched together, while the meaningless sequences are removed. If the sequence of an exon is changed, splicing can be disrupted, causing genetic mutations.

The researchers were able to stick the right sequences back into the exon by using short pieces of RNA (oligos), which stick to the exon of interest and had been modified to recruit signals that influence splicing. Using this novel strategy the splicing reaction can be manipulated.

This treatment was tested on cells from a patient suffering from spinal muscular atrophy. By putting these oligos into the cells, much of the protein required for the splicing process could be produced, allowing normal development of the cells.

Professor Ian Eperon from the University of Leicester adds: “Although oligos have previously been developed to block expression of genes, this research indicates that we can also use them to restore the proper expression of defective genes. As well as working in diseases with a clear genetic basis such as spinal muscular dystrophy, we are aware that other conditions such as inflammation or cancer involve changes in the splicing of normal genes and our method might allow us to reverse these and facilitate treatment of the illness.”

Spinal muscular atrophy is a serious and common disease affecting 1 in 10,000 births, resulting in mortality in babies who have the more serious form. The disease is caused by a mutation in a gene called SMN1. About 1 in 50 people have the defective version of SMN1.

Even though everyone carries a second copy of the SMN1 gene, SMN2, this does not compensate for the problem as a difference in a single base pair from SMN1 in just one exon prevents proper splicing. This novel method, that could have broad applications also in other disease, offers a new strategy to try to correct the defect that causes spinal muscular atrophy.

For further information, please contact:
Tony Stephenson
Imperial College London Press Office
Tel: +44 (0)20 7594 6712
Mobile: +44 (0)7753 739 766
E-mail: at.stephenson@imperial.ac.uk

Ather Mirza
University of Leicester Press Office
Tel: +44 (0)116 252 3335
Mobile: +44 (0)7711 927821
E-mail: pressoffice@le.ac.uk

Ather Mirza | University of Leicester

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>