Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover possible new treatment for genetic diseases

14.03.2003


Scientists from Imperial College London, the University of Leicester, and Hammersmith Hospital have found a way to stop certain types of genetic diseases from occurring by modifying the way DNA is turned into proteins.



The research published in this month’s Proceedings of the National Academy of Science shows how the researchers have been able to restore proper expression of defective genes, and that this might potentially have a positive effect in genetic diseases such as spinal muscular atrophy.

The research was carried out at Imperial College London and the University of Leicester as a collaboration between Professor Francesco Muntoni and Professor Ian Eperon.


Professor Muntoni, from Imperial College London and the Hammersmith Hospital comments: “Many genetic diseases are caused by the mutation of just one or two of the 3.2 billion base pairs of DNA which comprise our genome. The technique we have developed with our colleagues at the University of Leicester allows us to correct genetic mutations which result in abnormal splicing, as it is the case for spinal muscular atrophy.”

Splicing is part of the process by which genes are converted into proteins. Large chunks of useless and meaningless sequence have accumulated in the genes of higher organisations, and the mutation of just one or two of the 3.2 billion base pairs which make up our genome can interfere with splicing.

To make proteins genes first need to be processed into RNA (ribonucleic acid). The information in the genes is broken up into islands of information called exons, which need to be stitched together, while the meaningless sequences are removed. If the sequence of an exon is changed, splicing can be disrupted, causing genetic mutations.

The researchers were able to stick the right sequences back into the exon by using short pieces of RNA (oligos), which stick to the exon of interest and had been modified to recruit signals that influence splicing. Using this novel strategy the splicing reaction can be manipulated.

This treatment was tested on cells from a patient suffering from spinal muscular atrophy. By putting these oligos into the cells, much of the protein required for the splicing process could be produced, allowing normal development of the cells.

Professor Ian Eperon from the University of Leicester adds: “Although oligos have previously been developed to block expression of genes, this research indicates that we can also use them to restore the proper expression of defective genes. As well as working in diseases with a clear genetic basis such as spinal muscular dystrophy, we are aware that other conditions such as inflammation or cancer involve changes in the splicing of normal genes and our method might allow us to reverse these and facilitate treatment of the illness.”

Spinal muscular atrophy is a serious and common disease affecting 1 in 10,000 births, resulting in mortality in babies who have the more serious form. The disease is caused by a mutation in a gene called SMN1. About 1 in 50 people have the defective version of SMN1.

Even though everyone carries a second copy of the SMN1 gene, SMN2, this does not compensate for the problem as a difference in a single base pair from SMN1 in just one exon prevents proper splicing. This novel method, that could have broad applications also in other disease, offers a new strategy to try to correct the defect that causes spinal muscular atrophy.

For further information, please contact:
Tony Stephenson
Imperial College London Press Office
Tel: +44 (0)20 7594 6712
Mobile: +44 (0)7753 739 766
E-mail: at.stephenson@imperial.ac.uk

Ather Mirza
University of Leicester Press Office
Tel: +44 (0)116 252 3335
Mobile: +44 (0)7711 927821
E-mail: pressoffice@le.ac.uk

Ather Mirza | University of Leicester

More articles from Health and Medicine:

nachricht Dengue takes low and slow approach to replication
12.01.2018 | Duke University

nachricht Fast food makes the immune system more aggressive in the long term
12.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>