Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medication protects patients with peanut allergies

11.03.2003


Study shows life-threatening reactions from accidental ingestion can be avoided



A new medication could help most people with peanut allergies avoid life-threatening allergic reactions, according to a report in the March 14 issue of the New England Journal of Medicine. A research team led by Donald Leung, M.D., Ph.D. of National Jewish Medical and Research Center, and Hugh Sampson, M.D. of Mount Sinai School of Medicine, found that treatment with an anti-IgE antibody raised the average level at which study participants began reacting to peanuts from about half a peanut to almost nine peanuts. Researchers estimate that most of the 50-100 annual fatal reactions to peanuts occur after an allergic person accidentally eats the equivalent of just one to two nuts. The researchers also presented their findings March 10 in Denver at the annual meeting of the American Academy of Allergy, Asthma & Immunology IgE is the molecule that binds to a group of cells called mast cells, which then trigger the allergic response. Food allergy symptoms can range from nausea and itching to anaphylactic shock and death. TNX-901, the treatment used in this study, is a genetically engineered antibody made by Tanox Inc. that binds to the IgE molecule and prevents it from triggering the allergic response.

"Our results indicate that the anti-IgE antibody could become the first preventive medicine for peanut allergies," said Dr. Leung. "If future studies bear out this initial promise, anti-IgE could not only save lives, but help lift a cloud of fear that people with peanut allergies live under every time they eat."


Approximately 1.5 million people in the U.S. have peanut allergy, the leading cause of severe allergic reactions. Each year, thousands of people rush to hospital emergency rooms, and approximately 50 to 100 people die after accidentally eating peanuts. Strict avoidance is the only means of preventing an allergic reaction. But, that can be difficult to impossible, especially, since food labels do not always mention tiny amounts of peanuts that are found in some foods. An earlier study found that fatal reactions can occur after such difficult to avoid situations as eating a tuna sandwich made with a knife that had not been thoroughly cleaned after spreading peanut butter or eating cookies that were made on factory equipment that had earlier been used to make other cookies with peanuts. Existing medications, including epinephrine, antihistamines, bronchodilators, and charcoal pills, are taken only after the peanuts have been eaten and are not always effective.

"Anti-IgE therapy is not a cure for peanut allergy," said Dr. Sampson. "We believe that patients would have to continue the injections for the benefits to persist and they still would need to be careful about what they eat. But, because the amount they could consume without serious reaction would be greatly increased, the fear of accidental ingestion that detracts from quality of life for many patients would be eliminated. These are very promising results."

Blocking IgE is considered a major advance because it inhibits the allergic response at an earlier stage than other medicines, effectively stopping it before it begins. A slightly different anti-IgE molecule has shown promise in treating severe hay fever and asthma. In the current randomized, double-blinded, placebo-controlled study, 82 people ages 12 to 60 with severe peanut allergy were given four injections at monthly intervals of either a placebo or one of three doses (150 mg, 300 mg , or 450mg) of TNX-901. Before the trial began, each patient underwent an oral food challenge with increasing doses of peanut flour and a food challenge with a placebo to establish their sensitivity to peanuts. Patients were monitored closely during the challenges. Each challenge was halted and treatment begun as soon as a doctor determined that an allergic reaction had begun. Symptoms that commonly signaled an allergic reaction included nausea, abdominal pain, vomiting, throat or chest tightness, wheezing, itching, cough, and hives. Each patient’s threshold sensitivity to peanuts was considered the amount of peanut flour consumed immediately before the challenge was stopped. TNX-901 was well tolerated with no significant side effects.

Blood levels of IgE were measured before the injections began and periodically throughout the test. Two to four weeks after the final injection, patients underwent one more food challenge with peanut flour.

TNX-901 raised patients’ threshold sensitivity to peanut flour in a dose-responsive manner. The threshold sensitivity for patients receiving the largest dose (450 mg) of TNX-901 increased from an average of 177 mg to 2,805 mg. The average accidental ingestion is estimated to one to two peanuts or about 325 mg to 650 mg. Nearly a quarter of the patients receiving the highest dose of TNX-901 consumed 8,000 mg, or about 24 peanuts, with no reaction. Many patients still reacted to peanuts even after the injections. But on average, they could eat more peanuts without a reaction, and reacted less vigorously to the peanuts they did eat.


###
Other medical centers participating in the trial included Mayo Clinic in Rochester, MN; Arkansas Children’s Hospital in Little Rock, AK; and Children’s Hospital in Boston, MA.

William Allstetter | EurekAlert!
Further information:
http://www.njc.org/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>