Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing bacteria show researchers how an anti-flu-virus drug may prevent bacterial pneumonia

10.03.2003


Viral enzyme ’clear cuts’ forest of protective molecules on lung cells in mice; blocking that enzyme reduces illness and incidence of death from subsequent infection by Streptococcus pneumoniae



Investigators at St. Jude Children’s Research Hospital have shown in mice how the potentially deadly cooperation between influenza virus and bacterial pneumonia infections can be foiled, even if treatment is delayed and flu virus levels in the lung have peaked.

The St. Jude team showed that the flu virus enzyme neuraminidase (NA) strips lung cells of their protective forest of molecules called sialic acid. The unprotected cells are then vulnerable to subsequent infection with Streptococcus pneumoniae bacteria. But treatment of the mice with the NA-inhibitor drug ostelamivir blocked the activity of flu virus NA and offered significant protection against pneumonia. The study’s findings appear in the March 15 issue of the Journal of Infectious Diseases.


"We previously showed that when Streptococcus pneumoniae was given to mice seven days after they had been infected with flu virus, the mortality was extremely high," said Jonathan McCullers, MD, the lead author of the report. "Our current study using tissue in lab dishes, as well as live mice, showed that viral NA is the key to this deadly synergy between flu virus and pneumonia bacteria. The streptococcus bacteria also have NA," McCullers said, "but it is much less efficient than the viral enzyme in cutting away at the lung cell’s sialic acid barrier."

The St. Jude finding is important because a combined infection with influenza and pneumonia is the sixth leading cause of all deaths worldwide, and is the top cause of death due to an infection, according to McCullers assistant member in the Department of Infectious Diseases at St. Jude. Moreover, the overall death rate associated with pneumonia and influenza increased by 59% between 1979 and 1994, according to a 1996 report in the Journal of the American Medical Association.

"The flu virus targets the sialic acid molecules on the lung cell membrane surface so it can get inside the lung cell and reproduce," McCullers said. "After the virus multiplies inside the cell, the new viruses cut through the sialic acid on the way out."

"By blocking the virus NA we protect the sialic acid molecules covering the lung cells," says McCullers. "That leaves the pneumonia bacteria stranded outside the cells and gives the immune system time to destroy them before they can cause respiratory disease."

In the study, one group of mice received prophylactic (protective) doses of oseltamivir for five days, beginning four hours before being infected with flu virus. Another group got oseltamivir for five days starting 48 hours after being infected with flu.

Mice that received delayed treatment lost weight and had greatly increased levels of virus in their lungs by the time they received oseltamivir. However, these mice still had significant protection against subsequent infection by streptococcus bacteria compared to control mice that received no treatment.

"The key to significantly reducing the rate of death in these mice was not reducing virus levels or maintaining weight," McCullers explains. "What was important was blocking the virus NA enzyme with oseltamivir and preserving the protective sialic acid molecules."

The St. Jude team also studied the effect of oseltamivir on bacterial pneumonia using live mice infected with genetically modified streptococcus. These modified bacteria were engineered to carry on a light-producing chemical reaction--the same chemical reaction used by fireflies. The light, too faint for humans to see, passed through the skin of the mice and was picked up by a special camera.

In mice given flu virus and then the "glowing" streptococcus but no oseltamivir, the camera captured images of extensive bacterial infections throughout the thorax--the part of the body containing the lungs. In mice that also received oseltamivir as a delayed treatment after infection with flu virus, the light emitted from the lungs was less intense and not localized in specific areas. This suggested that the immune system of the infected mice was able to kill many of the bacteria that were "stranded" outside the cell membrane in oseltamivir-treated animals.

Untreated mice developed pneumonia earlier than treated mice and died. In treated mice, even when infection spread, the progression of the disease was slower than in untreated mice, and up to half of the treated animals survived.

When the researchers studied the effect of oseltamivir using human lung cells in a dish, they found that the drug blocked the binding of streptococcus to these cells by interfering with NA, similar to the findings in mice.

The article’s co-author is Rhodes College pre-med student Kimberly A. Bartmess, who works in Dr. McCullers’ lab as a part of the St. Jude – Rhodes Summer Plus Program.


###
This project was supported by the National Institute of Allergy and Infections Diseases at the National Institutes of Health, a Cancer Center Support Grant and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital, in Memphis, Tennessee, was founded by the late entertainer Danny Thomas. The hospital is an internationally recognized biomedical research center dedicated to finding cures for catastrophic diseases of childhood. The hospital’s work is supported through funds raised by ALSAC. ALSAC covers all costs not covered by insurance for medical treatment rendered at St. Jude Children’s Research Hospital. Families without insurance are never asked to pay. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>