Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New mouse virus may help scientists better understand cruise ship epidemics


A close relative of a common little-understood human virus that causes an estimated 23 million episodes of intestinal illness, 50,000 hospitalizations and 300 deaths each year has been discovered in mice. The finding by scientists at Washington University School of Medicine in St. Louis is reported in the March 7 issue of the journal Science.

Discovery of the new virus, known as murine norovirus 1 (MNV-1), may lead to a better understanding of its disease-causing cousins known as Norwalk viruses, or human noroviruses (HNVs). HNVs cause 90 percent of epidemic viral gastroenteritis worldwide, including those that sweep through cruise ships, nursing homes and military encampments causing debilitating diarrhea and vomiting.

"We know very little about human noroviruses because they cannot be grown in the laboratory or in animals," says study leader Herbert W. Virgin IV, M.D., Ph.D., professor of pathology and immunology and associate professor of molecular microbiology. "This new mouse virus will for the first time allow us to study this important class of human pathogens."

Virgin and colleagues discovered the virus in a strain of immune-deficient mice that were being reared for use in other research. When five of six mice died in one cage, the researchers decided to investigate. They took tissue from the dead mice and filtered and injected it into healthy mice, some of which had normal immunity and some of which were immune-deficient.

The mice with normal immunity remained healthy; the immune-deficient mice died. This indicated an infectious agent was present that healthy mice could resist but that killed immune-deficient mice. Further analysis identified the previously unknown norovirus.

The investigators then went a step further to determine what part of the mouse immune system is most important for fending off the infection.

The original mice had been engineered to lack two proteins: Rag (for recombination activating gene) and Stat1 (for signal transducer and activator of transcription 1).

Animals that lack the Rag do not develop T cells, B cells and antibodies. They therefore cannot recognize specific proteins, or antigens, that are found on viruses, bacteria and parasites. That is, the animals lack so-called adaptive immunity, which begins fighting viruses within a few days of infection.

Animals without Stat1 lack the other half of the immune system, known as innate immunity. Innate immunity kicks in immediately to fight infection, in part by causing cells to produce anti-viral molecules known as interferons. Mice that lack Stat1 cannot respond efficiently to interferon and lose most of their innate immune response. Mice deficient in both Rag and Stat1 have no adaptive and very limited innate immunity.

Virgin and colleagues discovered that mice with Stat1 but lacking Rag survived MNV-1 infection, while those lacking both Rag and Stat1 or Stat1 alone grew sick and died from it. They concluded that a strong innate immune response is essential for fighting off the virus.

"We were surprised to find that T cells or B cells weren’t needed to prevent lethal infection by this virus," Virgin says. "Mice without adaptive immunity seem to survive just fine."

Herpes and most other viruses kill mice that lack adaptive immunity, he adds.

The findings also have implications for commercial facilities that develop immune-deficient mice for use in research.

"Our data strongly suggest that infectious agents, including unknown infectious agents, should be considered when interpreting experiments that use immune-deficient mice," Virgin says. "Otherwise, one might conclude that an immune response was due to experimental conditions when in fact it may be due to a new pathogen."

Virgin also suggests that other scientists investigate unexplained deaths in immune-deficient mice.

"It may reveal other new viruses that might be useful for studying human biology and human infectious disease," he says.

Karst SM, Wobus CE, Lay M, Davidson J, Virgin IV, HW. STAT1-dependent immunity to a novel Norwalk-like virus. Science, March 7, 2003.

Funding from the National Institute of Allergy and Infectious Diseases supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>