Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Target for new lung cancer therapy found in embryonic cell pathway

06.03.2003


New work by researchers in the Kimmel Cancer Center at Johns Hopkins may allow them to halt the smoking-induced cellular events that lead to 99 percent of all small cell lung cancers (SCLC). The research is reported in the March 5, 2003, issue of Nature.



The researchers found that a primitive cellular pathway, called Sonic Hedgehog (named for the cartoon character and spiky hairs it develops on fruit flies) stays turned on long after it should be turned off in some lung cancers.

"We believe chronic injury to the lungs by cigarette smoking re-activates genes in the Hedgehog pathway to repair cell damage in the lining of the lungs. The ongoing and regular assault to the lungs by cigarettes causes the usually dormant pathway to be stuck in activation mode making too many new cells, ultimately resulting in cancer," says Neil Watkins, Ph.D., research associate at the Kimmel Cancer Center and lead author of the study.


The Sonic Hedgehog pathway has been well studied for its role in the development of mammalian embryonic cells, and more recently, for its relationship to cancer. Now, Kimmel Cancer Center investigators are testing drugs on mice, including one called cyclopamine, that block the Hedgehog pathway. Human clinical trials are not planned at this time and may be three to four years away.

The scientists analyzed tissue samples and tumor cell lines from SCLC and non-small cell lung cancer (NSCLC) patients. Of ten SCLC tissue samples studied, half showed activation of the Hedgehog pathway and increased expression of one of its targets called the Gli1 gene. They confirmed these findings by looking at SCLC cell lines in which five of seven lines examined showed similar activation of the Hedgehog pathway and Gli1 gene. Limited activation of the pathway was found in NSCLC.

"This study represents one of the first attempts to therapeutically manipulate this cell pathway, and it’s a perfect example of how basic developmental science can have clinical implications in a relatively short period of time," says Stephen B. Baylin, M.D., Ludwig professor of oncology and director of research at the Kimmel Cancer Center.

Lung cancer is the leading cancer killer. Close to 172,000 cases are diagnosed each year. Unresponsive to standard therapy, SCLC is the most lethal form of lung cancer. It typically cannot be treated with surgery and though it initially responds to chemotherapy, most patients relapse. "As cigarette smoking persists among young people, we expect to be dealing with this disease for years to come. As a result, the search for potential new therapies are key to controlling this disease," says Watkins.

In addition to Watkins and Baylin, other Johns Hopkins participants in this research include David Berman, Scott G. Burkholder, Baolin Wang, and Philip Beachy.



The research was funded by the Flight Attendant Medical Research Institute and a National Cancer Institute lung cancer SPORE (Specialized Projects of Research Excellence).

Under a licensing agreement between the Johns Hopkins University and Curis, Inc., Dr. Beachy is entitled to a share of royalty received by the University from sales of products related to the research described in this press release. The University and Dr. Beachy own Curis, Inc. stock, the sale of which is subject to certain restrictions. The terms of this arrangement are being managed by the University in accordance with its conflict of interest policies.

Media Contact: Vanessa Wasta 410-955-1287
Email: wastava@jhmi.edu

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinskimmelcancercenter.org

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>