Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Target for new lung cancer therapy found in embryonic cell pathway

06.03.2003


New work by researchers in the Kimmel Cancer Center at Johns Hopkins may allow them to halt the smoking-induced cellular events that lead to 99 percent of all small cell lung cancers (SCLC). The research is reported in the March 5, 2003, issue of Nature.



The researchers found that a primitive cellular pathway, called Sonic Hedgehog (named for the cartoon character and spiky hairs it develops on fruit flies) stays turned on long after it should be turned off in some lung cancers.

"We believe chronic injury to the lungs by cigarette smoking re-activates genes in the Hedgehog pathway to repair cell damage in the lining of the lungs. The ongoing and regular assault to the lungs by cigarettes causes the usually dormant pathway to be stuck in activation mode making too many new cells, ultimately resulting in cancer," says Neil Watkins, Ph.D., research associate at the Kimmel Cancer Center and lead author of the study.


The Sonic Hedgehog pathway has been well studied for its role in the development of mammalian embryonic cells, and more recently, for its relationship to cancer. Now, Kimmel Cancer Center investigators are testing drugs on mice, including one called cyclopamine, that block the Hedgehog pathway. Human clinical trials are not planned at this time and may be three to four years away.

The scientists analyzed tissue samples and tumor cell lines from SCLC and non-small cell lung cancer (NSCLC) patients. Of ten SCLC tissue samples studied, half showed activation of the Hedgehog pathway and increased expression of one of its targets called the Gli1 gene. They confirmed these findings by looking at SCLC cell lines in which five of seven lines examined showed similar activation of the Hedgehog pathway and Gli1 gene. Limited activation of the pathway was found in NSCLC.

"This study represents one of the first attempts to therapeutically manipulate this cell pathway, and it’s a perfect example of how basic developmental science can have clinical implications in a relatively short period of time," says Stephen B. Baylin, M.D., Ludwig professor of oncology and director of research at the Kimmel Cancer Center.

Lung cancer is the leading cancer killer. Close to 172,000 cases are diagnosed each year. Unresponsive to standard therapy, SCLC is the most lethal form of lung cancer. It typically cannot be treated with surgery and though it initially responds to chemotherapy, most patients relapse. "As cigarette smoking persists among young people, we expect to be dealing with this disease for years to come. As a result, the search for potential new therapies are key to controlling this disease," says Watkins.

In addition to Watkins and Baylin, other Johns Hopkins participants in this research include David Berman, Scott G. Burkholder, Baolin Wang, and Philip Beachy.



The research was funded by the Flight Attendant Medical Research Institute and a National Cancer Institute lung cancer SPORE (Specialized Projects of Research Excellence).

Under a licensing agreement between the Johns Hopkins University and Curis, Inc., Dr. Beachy is entitled to a share of royalty received by the University from sales of products related to the research described in this press release. The University and Dr. Beachy own Curis, Inc. stock, the sale of which is subject to certain restrictions. The terms of this arrangement are being managed by the University in accordance with its conflict of interest policies.

Media Contact: Vanessa Wasta 410-955-1287
Email: wastava@jhmi.edu

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinskimmelcancercenter.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>