Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Target for new lung cancer therapy found in embryonic cell pathway


New work by researchers in the Kimmel Cancer Center at Johns Hopkins may allow them to halt the smoking-induced cellular events that lead to 99 percent of all small cell lung cancers (SCLC). The research is reported in the March 5, 2003, issue of Nature.

The researchers found that a primitive cellular pathway, called Sonic Hedgehog (named for the cartoon character and spiky hairs it develops on fruit flies) stays turned on long after it should be turned off in some lung cancers.

"We believe chronic injury to the lungs by cigarette smoking re-activates genes in the Hedgehog pathway to repair cell damage in the lining of the lungs. The ongoing and regular assault to the lungs by cigarettes causes the usually dormant pathway to be stuck in activation mode making too many new cells, ultimately resulting in cancer," says Neil Watkins, Ph.D., research associate at the Kimmel Cancer Center and lead author of the study.

The Sonic Hedgehog pathway has been well studied for its role in the development of mammalian embryonic cells, and more recently, for its relationship to cancer. Now, Kimmel Cancer Center investigators are testing drugs on mice, including one called cyclopamine, that block the Hedgehog pathway. Human clinical trials are not planned at this time and may be three to four years away.

The scientists analyzed tissue samples and tumor cell lines from SCLC and non-small cell lung cancer (NSCLC) patients. Of ten SCLC tissue samples studied, half showed activation of the Hedgehog pathway and increased expression of one of its targets called the Gli1 gene. They confirmed these findings by looking at SCLC cell lines in which five of seven lines examined showed similar activation of the Hedgehog pathway and Gli1 gene. Limited activation of the pathway was found in NSCLC.

"This study represents one of the first attempts to therapeutically manipulate this cell pathway, and it’s a perfect example of how basic developmental science can have clinical implications in a relatively short period of time," says Stephen B. Baylin, M.D., Ludwig professor of oncology and director of research at the Kimmel Cancer Center.

Lung cancer is the leading cancer killer. Close to 172,000 cases are diagnosed each year. Unresponsive to standard therapy, SCLC is the most lethal form of lung cancer. It typically cannot be treated with surgery and though it initially responds to chemotherapy, most patients relapse. "As cigarette smoking persists among young people, we expect to be dealing with this disease for years to come. As a result, the search for potential new therapies are key to controlling this disease," says Watkins.

In addition to Watkins and Baylin, other Johns Hopkins participants in this research include David Berman, Scott G. Burkholder, Baolin Wang, and Philip Beachy.

The research was funded by the Flight Attendant Medical Research Institute and a National Cancer Institute lung cancer SPORE (Specialized Projects of Research Excellence).

Under a licensing agreement between the Johns Hopkins University and Curis, Inc., Dr. Beachy is entitled to a share of royalty received by the University from sales of products related to the research described in this press release. The University and Dr. Beachy own Curis, Inc. stock, the sale of which is subject to certain restrictions. The terms of this arrangement are being managed by the University in accordance with its conflict of interest policies.

Media Contact: Vanessa Wasta 410-955-1287

Vanessa Wasta | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>