Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hints into development of osteoporosis

05.03.2003


Defects in a protein called alphaV beta3 ntegrin appear to contribute to the development of osteoporosis, and these effects can be reversed by enhancing a protein called macrophage-colony-stimulating factor (M-CSF), according to research at Washington University School of Medicine in St. Louis.



The study appears in the first March issue of the Journal of Clinical Investigation and is published online March 4.

"Because of our previous research with these proteins, new drugs already are in clinical trials," says lead investigator Steven L. Teitelbaum, M.D., the Wilma and Roswell Messing Professor of Pathology and Immunology. "But we still do not understand how these proteins interact to affect bone-cell development. This study brings us significantly closer to determining that mechanism."


Osteoporosis, a condition that results in weakened, brittle bones, afflicts roughly 50 percent of Caucasian and Asian women after age 65. It develops when bone is broken down at a faster rate than it is synthesized. Therefore, curing the disease and others like it depends on understanding osteoclasts -- cells responsible for eroding bone -- and determining why they sometimes become overly active.

Teitelbaum’s team previously determined that M-CSF helps unspecialized bone cells develop into mature osteoclasts. Without enough M-CSF to encourage osteoclast growth, animals develop abnormally dense bone. Similarly, it is known that blocking alphaV beta3 integrin in animal models causes failure of osteoclast function. However, it is unclear precisely how M-CSF or alphaV beta3 integrin influence osteoclast development.

The absence of beta 3 (part of the alphaV beta3 integrin) in precursor cells has a curiously different effect on cells in a petri dish compared with cells in living animals. When grown in a dish, abnormally few osteoclasts develop, and those that do develop are dysfunctional. In animals, however, precursor cells lacking beta3 produce abnormally high numbers of osteoclasts.

"This paradox suggests that something in the living animal interacts with beta3 during the process of osteoclast differentiation," Teitelbaum explains.

His team discovered the interaction may involve M-CSF. When they took precursor cells from mice lacking beta3 and put them in a petri dish very few became osteoclasts. But when levels of M-CSF were increased, the stunted growth effect was reversed. Furthermore, they determined that a particular structure on the surface of the cell (c-Fms tyrosine 697, a component of the protein designed to bind to M-CSF) appears to be largely responsible for this interaction.

"The interaction between M-CSF and alphaV beta3 integrin is intriguing and may help explain some of the less-understood aspects of animal models of osteoporosis," Teitelbaum says.

Because of this interaction, Teitelbaum and colleagues also explored whether alphaV beta3 integrin and M-CSF are involved in the same signaling pathway that causes precursor cells to differentiate into osteoclasts. They found increased levels of M-CSF also restored activity of externally regulated kinases (ERKs) and a protein called c-Fos, which are critical for stimulating the cascade of events that lead to bone-cell differentiation. Since alphaV beta3 integrin also is known to contribute to the activation of ERKs and c-Fos, the team concludes that the alphaV beta3 integrin and M-CSF collaborate in the process of osteoclast differentiation.



Faccio R, Takeshita S, Zallone A, Ross FP, Teitelbaum SL. c-Fms and the avb3 integrin collaborate during osteoclast differentiation. Journal of Clinical Investigation, March 2003.

Funding from the National Institutes of Health, Pharmacia Corp, the Italian Foundation for Cancer Research and the Italian Space Agency supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>