Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Current theory on cause of kidney stones refuted

04.03.2003


New research into the origin of kidney stone formation published in the March 1 issue of the Journal of Clinical Investigation may well change the direction of the most basic level of research in that area.



The study, conducted at Indiana University School of Medicine, Clarian Health Partners and the University of Chicago, will dispel the current beliefs of where stone formation begins, said Andrew P. Evan, Ph.D., the article’s lead author. Dr. Evan, who is a professor of anatomy and cell biology at IU School of Medicine, said the research did confirm a hypothesis published in 1940 by Alexander Randall, M.D.

Dr. Randall theorized that kidney stones developed from crystals of calcium phosphate in a centrally located area of the kidney known as the papilla tip. However, analytical and imaging tools available during Dr. Randall’s day were inadequate to confirm his hypothesis. Today, the primary theory is that cell injury is necessary before crystals can attach to kidney tissue and develop and that crystals are composed of calcium oxalate. Both theories were refuted by the current Clinical Investigation article.


"Our research localized the site of the original mineral deposit for the most common group of stone formers and we have determined the composition of the crystal," Dr. Evan said. That composition is calcium phosphate, a common component of bone and teeth. Dr. Randall surmised that calcium phosphate was the primary component of stones in their formation phase even though kidney stones later in the process are composed almost entirely of calcium oxalate.

Using infrared analysis, researchers looked at tissue from three groups of kidney patients: calcium oxalate stone formers, who account for 75 percent of all kidney stone patients; patients prone to developing kidney stones following intestinal bypass surgery for obesity; and a control group of patients who had malignant tumors in their ureters, a tube that carries urine to the bladder.

Kidney biopsies of the living patients pinpointed the initial sites where the changes begin and the stones form, said Dr. Evan. "This phase of the research was made possible by advances in equipment and surgical protocol not available in Randall’s day," Dr. Evan said. "They represent the state-of-the-art approach for kidney stone treatment."

Researchers learned that in the first group, the calcium phosphate crystals are first deposited in the interstitial tissue inside the papilla, as surmised by Dr. Randall. However, in the obesity-related bypass group, the crystals begin in the lining of very small tubules as they thread their way to the ureter. The control group showed no sign of stone formation.

Dr. Evan said ongoing research for a third group of stone formers, not included in this report, indicates yet a third location as the initial site for crystals.

"There are unique features about the physiology and diet specific to the various kinds of stone formers," Dr. Evans says. "However, our research is the first evidence to give investigators a place to begin the search."

Dr. Evan was joined in the research by James E. Lingeman, M.D., from the Methodist Hospital (Indianapolis) Institute for Kidney Stone Disease, and Fredric L. Coe, M.D., professor of medicine and physiology in the Section of Nephrology at the University of Chicago.

Funding for study was provided by a $5.6 million, five-year grant from the National Institutes of Health.

Kidney stones can take up to 10 years to form and affect up to 5 percent of the U.S. population. In 1993, the most recent year with available figures, total cost of the condition to patients in the United States was more than $1.8 billion.

Mary Hardin | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>