Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Current theory on cause of kidney stones refuted

04.03.2003


New research into the origin of kidney stone formation published in the March 1 issue of the Journal of Clinical Investigation may well change the direction of the most basic level of research in that area.



The study, conducted at Indiana University School of Medicine, Clarian Health Partners and the University of Chicago, will dispel the current beliefs of where stone formation begins, said Andrew P. Evan, Ph.D., the article’s lead author. Dr. Evan, who is a professor of anatomy and cell biology at IU School of Medicine, said the research did confirm a hypothesis published in 1940 by Alexander Randall, M.D.

Dr. Randall theorized that kidney stones developed from crystals of calcium phosphate in a centrally located area of the kidney known as the papilla tip. However, analytical and imaging tools available during Dr. Randall’s day were inadequate to confirm his hypothesis. Today, the primary theory is that cell injury is necessary before crystals can attach to kidney tissue and develop and that crystals are composed of calcium oxalate. Both theories were refuted by the current Clinical Investigation article.


"Our research localized the site of the original mineral deposit for the most common group of stone formers and we have determined the composition of the crystal," Dr. Evan said. That composition is calcium phosphate, a common component of bone and teeth. Dr. Randall surmised that calcium phosphate was the primary component of stones in their formation phase even though kidney stones later in the process are composed almost entirely of calcium oxalate.

Using infrared analysis, researchers looked at tissue from three groups of kidney patients: calcium oxalate stone formers, who account for 75 percent of all kidney stone patients; patients prone to developing kidney stones following intestinal bypass surgery for obesity; and a control group of patients who had malignant tumors in their ureters, a tube that carries urine to the bladder.

Kidney biopsies of the living patients pinpointed the initial sites where the changes begin and the stones form, said Dr. Evan. "This phase of the research was made possible by advances in equipment and surgical protocol not available in Randall’s day," Dr. Evan said. "They represent the state-of-the-art approach for kidney stone treatment."

Researchers learned that in the first group, the calcium phosphate crystals are first deposited in the interstitial tissue inside the papilla, as surmised by Dr. Randall. However, in the obesity-related bypass group, the crystals begin in the lining of very small tubules as they thread their way to the ureter. The control group showed no sign of stone formation.

Dr. Evan said ongoing research for a third group of stone formers, not included in this report, indicates yet a third location as the initial site for crystals.

"There are unique features about the physiology and diet specific to the various kinds of stone formers," Dr. Evans says. "However, our research is the first evidence to give investigators a place to begin the search."

Dr. Evan was joined in the research by James E. Lingeman, M.D., from the Methodist Hospital (Indianapolis) Institute for Kidney Stone Disease, and Fredric L. Coe, M.D., professor of medicine and physiology in the Section of Nephrology at the University of Chicago.

Funding for study was provided by a $5.6 million, five-year grant from the National Institutes of Health.

Kidney stones can take up to 10 years to form and affect up to 5 percent of the U.S. population. In 1993, the most recent year with available figures, total cost of the condition to patients in the United States was more than $1.8 billion.

Mary Hardin | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>