Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BIDMC researchers identify source of preeclampsia

04.03.2003


Researchers at Beth Israel Deaconess Medical Center (BIDMC) have identified a protein that leads to the development of preeclampsia, a serious and potentially life-threatening complication of pregnancy.



These findings, which could help lead to the development of diagnostic tools and therapies for this baffling condition, appear in the March 2003 issue of The Journal of Clinical Investigation.

Also known as toxemia, preeclampsia occurs in an estimated 5 percent of all pregnancies, affecting approximately 200,000 women in the U.S. each year. The condition typically develops after the 20th week of pregnancy and in mild cases, is characterized by high blood pressure, edema, and protein in the urine. In severe cases, the condition can rapidly develop into eclampsia, in which the mother suffers serious – and potentially fatal – seizures.


"Currently, there is no treatment for this condition," says the study’s lead author S. Ananth Karumanchi, M.D., of the Renal Division at BIDMC and Instructor of Medicine at Harvard Medical School. "The only management we can offer patients is to deliver the baby and the placenta, which can result in the infant being born prematurely." As a result, preeclampsia is one of the leading causes of maternal and infant mortality in developing countries.

In a normal pregnancy, the developing fetus signals the mother’s body to widen blood vessels to the placenta, which supplies oxygen and nutrients to the fetus. But, for unknown reasons, in women with preeclampsia the blood vessels grow narrower, impeding the flow of blood and oxygen. The diminished oxygen levels apparently set in motion a rapid progression of potentially fatal complications involving the mother’s liver, kidneys, lungs, blood and nervous system.

Scientists have long speculated that the placenta was releasing some unknown factor that was triggering this abnormal course of events. In order to identify this factor, Karumanchi and his colleagues first performed gene expression profiling tests of placental tissue from patients with and without preeclampsia.

The test results showed that a protein known as soluble fms-like tyrosine kinase 1 (sFlt1) was significantly elevated among the preeclampsia patients. With this information in hand, the researchers administered the protein to both pregnant and non-pregnant rats to test whether sFlt1 was at the root of the problem.

"The resulting data was exciting," says Karumanchi. "The rats that were exposed to sFlt1 had distinct clinical and pathological symptoms of preeclampsia, demonstrating for the first time a clear cause and effect relationship between this protein and this disease."

What is apparently happening, he explains, is that sFlt1 is binding to and "mopping up" another group of proteins, known as angiogenic factors. "Vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) exist to promote angiogenesis, the growth and health of small blood vessels," he explains. VEGF has, in fact, been shown to promote tumor growth among cancer patients and is therefore the target of anti-angiogenic therapies being developed for the treatment of some malignancies.

Among preeclampsia patients, says Karumanchi, the diminished levels of VEGF and PIGF caused by the actions of sFlt1 affect the health of the mother’s small blood vessels, and ultimately lead to the telltale symptoms of preeclampsia.

"These findings provide us with an important piece of information as we work to develop strategies to treat preeclampsia," notes Karumanchi. "We’re obviously a number of years away from being able to put these to use in humans but these results are an important step in the process." Furthermore, adds study coauthor Vikas Sukhatme, M.D., Ph.D., this study has important implications for the use of anti-angiogenic therapies in the treatment of cancer.


###
Study coauthors include Sharon Maynard, M.D., Jiang-Yong Min, M.D., Jaime Merchan, M.D., Kee-Hak Lim, M.D., Jianyi Li, Ph.D., Susanta Mondal, Ph.D., Towia Libermann, Ph.D., James Morgan, M.D., Ph.D., Frank Sellke, M.D., Isaac Stillman, M.D., Franklin Epstein, M.D., and Vikas Sukhatme, M.D., Ph.D., who represent the Departments of Medicine, Surgery, Pathology and Obstetrics and Gynecology at Beth Israel Deaconess Medical Center.

The study was supported by grants from the National Institutes of Health, the National Institute of Diabetes and Digestive and Kidney Diseases, the American Society of Nephrology, and support from Beth Israel Deaconess Medical Center.

Beth Israel Deaconess Medical Center is a major patient care, research and teaching affiliate of Harvard Medical School and a founding member of CareGroup Healthcare System. The Department of Obstetrics and Gynecology at BIDMC delivers 5,000 infants each year and specializes in the care of high-risk pregnant women, including preeclampsia patients. Beth Israel Deaconess is the third largest recipient of National Institutes of Health funding among independent U.S. teaching hospitals.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>