Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BIDMC researchers identify source of preeclampsia

04.03.2003


Researchers at Beth Israel Deaconess Medical Center (BIDMC) have identified a protein that leads to the development of preeclampsia, a serious and potentially life-threatening complication of pregnancy.



These findings, which could help lead to the development of diagnostic tools and therapies for this baffling condition, appear in the March 2003 issue of The Journal of Clinical Investigation.

Also known as toxemia, preeclampsia occurs in an estimated 5 percent of all pregnancies, affecting approximately 200,000 women in the U.S. each year. The condition typically develops after the 20th week of pregnancy and in mild cases, is characterized by high blood pressure, edema, and protein in the urine. In severe cases, the condition can rapidly develop into eclampsia, in which the mother suffers serious – and potentially fatal – seizures.


"Currently, there is no treatment for this condition," says the study’s lead author S. Ananth Karumanchi, M.D., of the Renal Division at BIDMC and Instructor of Medicine at Harvard Medical School. "The only management we can offer patients is to deliver the baby and the placenta, which can result in the infant being born prematurely." As a result, preeclampsia is one of the leading causes of maternal and infant mortality in developing countries.

In a normal pregnancy, the developing fetus signals the mother’s body to widen blood vessels to the placenta, which supplies oxygen and nutrients to the fetus. But, for unknown reasons, in women with preeclampsia the blood vessels grow narrower, impeding the flow of blood and oxygen. The diminished oxygen levels apparently set in motion a rapid progression of potentially fatal complications involving the mother’s liver, kidneys, lungs, blood and nervous system.

Scientists have long speculated that the placenta was releasing some unknown factor that was triggering this abnormal course of events. In order to identify this factor, Karumanchi and his colleagues first performed gene expression profiling tests of placental tissue from patients with and without preeclampsia.

The test results showed that a protein known as soluble fms-like tyrosine kinase 1 (sFlt1) was significantly elevated among the preeclampsia patients. With this information in hand, the researchers administered the protein to both pregnant and non-pregnant rats to test whether sFlt1 was at the root of the problem.

"The resulting data was exciting," says Karumanchi. "The rats that were exposed to sFlt1 had distinct clinical and pathological symptoms of preeclampsia, demonstrating for the first time a clear cause and effect relationship between this protein and this disease."

What is apparently happening, he explains, is that sFlt1 is binding to and "mopping up" another group of proteins, known as angiogenic factors. "Vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) exist to promote angiogenesis, the growth and health of small blood vessels," he explains. VEGF has, in fact, been shown to promote tumor growth among cancer patients and is therefore the target of anti-angiogenic therapies being developed for the treatment of some malignancies.

Among preeclampsia patients, says Karumanchi, the diminished levels of VEGF and PIGF caused by the actions of sFlt1 affect the health of the mother’s small blood vessels, and ultimately lead to the telltale symptoms of preeclampsia.

"These findings provide us with an important piece of information as we work to develop strategies to treat preeclampsia," notes Karumanchi. "We’re obviously a number of years away from being able to put these to use in humans but these results are an important step in the process." Furthermore, adds study coauthor Vikas Sukhatme, M.D., Ph.D., this study has important implications for the use of anti-angiogenic therapies in the treatment of cancer.


###
Study coauthors include Sharon Maynard, M.D., Jiang-Yong Min, M.D., Jaime Merchan, M.D., Kee-Hak Lim, M.D., Jianyi Li, Ph.D., Susanta Mondal, Ph.D., Towia Libermann, Ph.D., James Morgan, M.D., Ph.D., Frank Sellke, M.D., Isaac Stillman, M.D., Franklin Epstein, M.D., and Vikas Sukhatme, M.D., Ph.D., who represent the Departments of Medicine, Surgery, Pathology and Obstetrics and Gynecology at Beth Israel Deaconess Medical Center.

The study was supported by grants from the National Institutes of Health, the National Institute of Diabetes and Digestive and Kidney Diseases, the American Society of Nephrology, and support from Beth Israel Deaconess Medical Center.

Beth Israel Deaconess Medical Center is a major patient care, research and teaching affiliate of Harvard Medical School and a founding member of CareGroup Healthcare System. The Department of Obstetrics and Gynecology at BIDMC delivers 5,000 infants each year and specializes in the care of high-risk pregnant women, including preeclampsia patients. Beth Israel Deaconess is the third largest recipient of National Institutes of Health funding among independent U.S. teaching hospitals.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>