Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation and intratumoral injection turn on immune system to attack brain tumor cells

03.03.2003


Researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute are working to develop a non-surgical approach to brain cancer that uses radiation and the injection of specially cultured bone marrow cells into the tumor. The combination sets in motion a local and systemic immune response to kill surviving tumor cells.



The novel approach has provided promising results in a study on rats, described in the March 3 issue of the Journal of Immunotherapy. Human trials are expected to begin within the year, according to John S. Yu, M.D., senior author of the article and co-director of the Comprehensive Brain Tumor Program at the Institute.

This therapy may prove to be an important step in the development of dendritic cell immunotherapy, which Institute neurosurgeons and scientists have been using experimentally for the past few years. Early results have shown promise for extending length of survival in patients with highly aggressive brain tumors called gliomas.


Dendritic cells, elements of the immune system, "clean up" foreign proteins and in the process identify them as invaders for the immune system’s T-cells to attack. This is a key role because several mechanisms allow glioma cells to grow and spread without being detected by the immune system.

In current dendritic cell immunotherapy, neurosurgeons must first surgically remove tumor cells from the patient’s brain and culture them with dendritic cells in the laboratory. When the resulting "vaccine" is injected under the skin, the dendritic cells recognize tumor cells as invaders, triggering an immune response. The new approach is based on recent studies showing that dendritic cells can identify dying tumor cells in the body, not just tumor cells they are exposed to in the laboratory.

"If the good results we’ve seen in the animal study are repeated when we move into human trials, we may be able offer hope even for patients who have brain tumors in locations that cannot be accessed surgically," said Keith L. Black, M.D., one of the article’s authors and director of the Maxine Dunitz Neurosurgical Institute. "Over the course of the past several years, we have been involved in a number of research findings that we think will lead to dramatic changes in the way these deadly tumors are treated. Instead of exposing the patient to harsh therapies that bring with them side effects and serious risks, we’re moving toward helping the immune system heal the body itself."

A pioneer in the use of dendritic cell immunotherapy to combat brain tumors, Dr. Black directs the medical center’s Division of Neurosurgery and the Comprehensive Brain Tumor Program, and he holds the Ruth and Lawrence Harvey Chair in Neuroscience.

In the animal study, dendritic cells taken from bone marrow and cultured were injected into gliomas that contained some tumor cells that had been exposed to radiation and others that had not. As the dendritic cells began taking up and processing pieces of dying tumor, they set off a local immune system response, enlisting T-cells to destroy the tumor.

Injected dendritic cells also moved into regional lymph nodes where they would be able to activate additional T-cells to fight metastatic cancer cells. Migration to the lymph nodes also initiated a systemic immune response, enlisting other "cytokines" against glioma cells. Furthermore, dendritic cells are associated with the secretion of Interleukin-12, a naturally occurring chemical that Institute researchers have found to be extremely effective in killing glioma cells.

This is the first study in which dendritic cells have been delivered directly into brain tumors with therapeutic success. Animals receiving the dendritic cell treatment lived considerably longer than controls. Even after having new tumors implanted later, rats that had been treated with dendritic cell immunotherapy continued to survive, an indication of the long-lasting benefits of the vaccine.

Researchers hope similar benefits – with improved success rates and less need for open surgery – will be seen when the therapy moves into human trials. Radiosurgery – which focuses radiation beams from hundreds of computer-selected angles on a tumor – kills cancer cells while minimizing damage to nearby tissues and vital structures. Rarely, however, is a tumor completely obliterated. The initiation of immunotherapy is intended to "mop up" the tumor cells that escape.


Moneeb Ehtesham, M.D., post-doctoral fellow at the Institute, is the article’s first author. The work was supported in part by grant NS02232 to Dr. Yu from the National Institutes of Health.

Cedars-Sinai Medical Center is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.


Sandra Van | EurekAlert!
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>