Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation and intratumoral injection turn on immune system to attack brain tumor cells

03.03.2003


Researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute are working to develop a non-surgical approach to brain cancer that uses radiation and the injection of specially cultured bone marrow cells into the tumor. The combination sets in motion a local and systemic immune response to kill surviving tumor cells.



The novel approach has provided promising results in a study on rats, described in the March 3 issue of the Journal of Immunotherapy. Human trials are expected to begin within the year, according to John S. Yu, M.D., senior author of the article and co-director of the Comprehensive Brain Tumor Program at the Institute.

This therapy may prove to be an important step in the development of dendritic cell immunotherapy, which Institute neurosurgeons and scientists have been using experimentally for the past few years. Early results have shown promise for extending length of survival in patients with highly aggressive brain tumors called gliomas.


Dendritic cells, elements of the immune system, "clean up" foreign proteins and in the process identify them as invaders for the immune system’s T-cells to attack. This is a key role because several mechanisms allow glioma cells to grow and spread without being detected by the immune system.

In current dendritic cell immunotherapy, neurosurgeons must first surgically remove tumor cells from the patient’s brain and culture them with dendritic cells in the laboratory. When the resulting "vaccine" is injected under the skin, the dendritic cells recognize tumor cells as invaders, triggering an immune response. The new approach is based on recent studies showing that dendritic cells can identify dying tumor cells in the body, not just tumor cells they are exposed to in the laboratory.

"If the good results we’ve seen in the animal study are repeated when we move into human trials, we may be able offer hope even for patients who have brain tumors in locations that cannot be accessed surgically," said Keith L. Black, M.D., one of the article’s authors and director of the Maxine Dunitz Neurosurgical Institute. "Over the course of the past several years, we have been involved in a number of research findings that we think will lead to dramatic changes in the way these deadly tumors are treated. Instead of exposing the patient to harsh therapies that bring with them side effects and serious risks, we’re moving toward helping the immune system heal the body itself."

A pioneer in the use of dendritic cell immunotherapy to combat brain tumors, Dr. Black directs the medical center’s Division of Neurosurgery and the Comprehensive Brain Tumor Program, and he holds the Ruth and Lawrence Harvey Chair in Neuroscience.

In the animal study, dendritic cells taken from bone marrow and cultured were injected into gliomas that contained some tumor cells that had been exposed to radiation and others that had not. As the dendritic cells began taking up and processing pieces of dying tumor, they set off a local immune system response, enlisting T-cells to destroy the tumor.

Injected dendritic cells also moved into regional lymph nodes where they would be able to activate additional T-cells to fight metastatic cancer cells. Migration to the lymph nodes also initiated a systemic immune response, enlisting other "cytokines" against glioma cells. Furthermore, dendritic cells are associated with the secretion of Interleukin-12, a naturally occurring chemical that Institute researchers have found to be extremely effective in killing glioma cells.

This is the first study in which dendritic cells have been delivered directly into brain tumors with therapeutic success. Animals receiving the dendritic cell treatment lived considerably longer than controls. Even after having new tumors implanted later, rats that had been treated with dendritic cell immunotherapy continued to survive, an indication of the long-lasting benefits of the vaccine.

Researchers hope similar benefits – with improved success rates and less need for open surgery – will be seen when the therapy moves into human trials. Radiosurgery – which focuses radiation beams from hundreds of computer-selected angles on a tumor – kills cancer cells while minimizing damage to nearby tissues and vital structures. Rarely, however, is a tumor completely obliterated. The initiation of immunotherapy is intended to "mop up" the tumor cells that escape.


Moneeb Ehtesham, M.D., post-doctoral fellow at the Institute, is the article’s first author. The work was supported in part by grant NS02232 to Dr. Yu from the National Institutes of Health.

Cedars-Sinai Medical Center is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.


Sandra Van | EurekAlert!
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>