Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN researchers develop first reliable diagnostic test for myotonic muscular dystrophy type 2

26.02.2003


DM2 more common than previously thought

Researchers at the University of Minnesota Medical School’s Muscular Dystrophy Center have developed the first reliable diagnostic test for myotonic muscular dystrophy type 2 (DM2), leading to the accurate determination of the disease’s clinical and molecular features. Initial results indicate that DM2 is much more common than previously thought, and may be one of the more common forms of muscular dystrophy. The findings will be reported in the Feb. 26 issue of Neurology.

Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, affects the eyes, heart, hormonal systems, and blood, in addition to causing muscular dystrophy and involuntary muscle stiffness (myotonia). Prior to this research, most cases of myotonic dystrophy were thought to be the more severe form, myotonic dystrophy type 1 (DM1), which occurs in about one of every 7,000 people worldwide. Earlier estimates that DM2 occurs at 2 percent of the rate for DM1 have now been significantly revised; the frequency of DM2 may equal that of DM1 in some populations.



"Until now, myotonic dystrophy type 2 has been difficult to diagnose," said John W. Day, M.D., Ph.D., professor, Department of Neurology and the Institute of Human Genetics. "The DNA alteration that causes DM2 is extremely unstable, and dramatically varies in size within blood of an affected individual. Because of this marked range of sizes in each affected individual, the genetic change has been very difficult to detect." The new diagnostic method amplifies a portion of the mutation in DNA from a patient’s blood, and then uses a second step to verify that it truly is a DM2 mutation.

"Oftentimes, people with DM2 are not correctly diagnosed with the disease," said Laura P. W. Ranum, Ph.D., associate professor, Department of Genetics, Cell Biology and Development and the Institute of Human Genetics. "They see different doctors about separate symptoms, without either patient or physician knowing the underlying cause. Being able to diagnose these patients means we hope to stay a step ahead with their treatment."

Ranum, Day, and their colleagues evaluated the genetic features of 379 individuals from 133 DM2 families, demonstrating that. DM2 occurs in many families of Northern European ancestry. Clinically, DM2 resembles adult-onset DM1, with myotonia, muscular dystrophy, cataracts, diabetes, testicular failure, and cardiac conduction defects. An important distinction with DM1 is the lack of a severe congenital form of DM2.

In earlier research, Day and Ranum located the genetic cause of DM2 on chromosome 3 in 1998 (Nature Genetics 19:196), and collaborated with investigators in Germany and Texas to find in 2001 that DM2 is caused by repetition of the genetic code "CCTG" over and over again within intron 1 of the zinc finger protein 9 (ZNF9) gene (Science 293:864-867, 2001). These earlier findings indicated that a novel disease mechanism involving abnormal RNA causes both DM1 and DM2. "RNA is the messenger molecule that translates the DNA code into proteins," said Ranum. "Identification of the unusual genetic cause of DM2 led to the realization that RNA itself can cause disease."


###
For copies of the Neurology paper, please call the American Academy of Neurology at 651-695-2763.


Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>