Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN researchers develop first reliable diagnostic test for myotonic muscular dystrophy type 2

26.02.2003


DM2 more common than previously thought

Researchers at the University of Minnesota Medical School’s Muscular Dystrophy Center have developed the first reliable diagnostic test for myotonic muscular dystrophy type 2 (DM2), leading to the accurate determination of the disease’s clinical and molecular features. Initial results indicate that DM2 is much more common than previously thought, and may be one of the more common forms of muscular dystrophy. The findings will be reported in the Feb. 26 issue of Neurology.

Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, affects the eyes, heart, hormonal systems, and blood, in addition to causing muscular dystrophy and involuntary muscle stiffness (myotonia). Prior to this research, most cases of myotonic dystrophy were thought to be the more severe form, myotonic dystrophy type 1 (DM1), which occurs in about one of every 7,000 people worldwide. Earlier estimates that DM2 occurs at 2 percent of the rate for DM1 have now been significantly revised; the frequency of DM2 may equal that of DM1 in some populations.



"Until now, myotonic dystrophy type 2 has been difficult to diagnose," said John W. Day, M.D., Ph.D., professor, Department of Neurology and the Institute of Human Genetics. "The DNA alteration that causes DM2 is extremely unstable, and dramatically varies in size within blood of an affected individual. Because of this marked range of sizes in each affected individual, the genetic change has been very difficult to detect." The new diagnostic method amplifies a portion of the mutation in DNA from a patient’s blood, and then uses a second step to verify that it truly is a DM2 mutation.

"Oftentimes, people with DM2 are not correctly diagnosed with the disease," said Laura P. W. Ranum, Ph.D., associate professor, Department of Genetics, Cell Biology and Development and the Institute of Human Genetics. "They see different doctors about separate symptoms, without either patient or physician knowing the underlying cause. Being able to diagnose these patients means we hope to stay a step ahead with their treatment."

Ranum, Day, and their colleagues evaluated the genetic features of 379 individuals from 133 DM2 families, demonstrating that. DM2 occurs in many families of Northern European ancestry. Clinically, DM2 resembles adult-onset DM1, with myotonia, muscular dystrophy, cataracts, diabetes, testicular failure, and cardiac conduction defects. An important distinction with DM1 is the lack of a severe congenital form of DM2.

In earlier research, Day and Ranum located the genetic cause of DM2 on chromosome 3 in 1998 (Nature Genetics 19:196), and collaborated with investigators in Germany and Texas to find in 2001 that DM2 is caused by repetition of the genetic code "CCTG" over and over again within intron 1 of the zinc finger protein 9 (ZNF9) gene (Science 293:864-867, 2001). These earlier findings indicated that a novel disease mechanism involving abnormal RNA causes both DM1 and DM2. "RNA is the messenger molecule that translates the DNA code into proteins," said Ranum. "Identification of the unusual genetic cause of DM2 led to the realization that RNA itself can cause disease."


###
For copies of the Neurology paper, please call the American Academy of Neurology at 651-695-2763.


Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>