Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U of MN researchers develop first reliable diagnostic test for myotonic muscular dystrophy type 2


DM2 more common than previously thought

Researchers at the University of Minnesota Medical School’s Muscular Dystrophy Center have developed the first reliable diagnostic test for myotonic muscular dystrophy type 2 (DM2), leading to the accurate determination of the disease’s clinical and molecular features. Initial results indicate that DM2 is much more common than previously thought, and may be one of the more common forms of muscular dystrophy. The findings will be reported in the Feb. 26 issue of Neurology.

Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, affects the eyes, heart, hormonal systems, and blood, in addition to causing muscular dystrophy and involuntary muscle stiffness (myotonia). Prior to this research, most cases of myotonic dystrophy were thought to be the more severe form, myotonic dystrophy type 1 (DM1), which occurs in about one of every 7,000 people worldwide. Earlier estimates that DM2 occurs at 2 percent of the rate for DM1 have now been significantly revised; the frequency of DM2 may equal that of DM1 in some populations.

"Until now, myotonic dystrophy type 2 has been difficult to diagnose," said John W. Day, M.D., Ph.D., professor, Department of Neurology and the Institute of Human Genetics. "The DNA alteration that causes DM2 is extremely unstable, and dramatically varies in size within blood of an affected individual. Because of this marked range of sizes in each affected individual, the genetic change has been very difficult to detect." The new diagnostic method amplifies a portion of the mutation in DNA from a patient’s blood, and then uses a second step to verify that it truly is a DM2 mutation.

"Oftentimes, people with DM2 are not correctly diagnosed with the disease," said Laura P. W. Ranum, Ph.D., associate professor, Department of Genetics, Cell Biology and Development and the Institute of Human Genetics. "They see different doctors about separate symptoms, without either patient or physician knowing the underlying cause. Being able to diagnose these patients means we hope to stay a step ahead with their treatment."

Ranum, Day, and their colleagues evaluated the genetic features of 379 individuals from 133 DM2 families, demonstrating that. DM2 occurs in many families of Northern European ancestry. Clinically, DM2 resembles adult-onset DM1, with myotonia, muscular dystrophy, cataracts, diabetes, testicular failure, and cardiac conduction defects. An important distinction with DM1 is the lack of a severe congenital form of DM2.

In earlier research, Day and Ranum located the genetic cause of DM2 on chromosome 3 in 1998 (Nature Genetics 19:196), and collaborated with investigators in Germany and Texas to find in 2001 that DM2 is caused by repetition of the genetic code "CCTG" over and over again within intron 1 of the zinc finger protein 9 (ZNF9) gene (Science 293:864-867, 2001). These earlier findings indicated that a novel disease mechanism involving abnormal RNA causes both DM1 and DM2. "RNA is the messenger molecule that translates the DNA code into proteins," said Ranum. "Identification of the unusual genetic cause of DM2 led to the realization that RNA itself can cause disease."

For copies of the Neurology paper, please call the American Academy of Neurology at 651-695-2763.

Brenda Hudson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>