Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Teasing apart the molecules of life


Researchers devise new technique and measure the forces required to unzip DNA

Fifty years after James Watson and Francis Crick’s publication of the structure of DNA, research in the latest issue of the Journal of Biology shows how scientists can now measure the forces needed to tear the DNA double helix apart. The work was carried out using the first successful simultaneous combination of two important techniques for looking at single molecules - single molecule fluorescence and optical trapping.
Optical trapping, or ’optical tweezers’, uses laser beams to counteract, and hence reveal, the tiny forces involved in the complex interactions between molecules. Single molecule fluorescence enables researchers to study biological systems on a molecule by molecule basis, by lighting up parts of the molecule in particular circumstances. The combination of the two methods applied to a single molecule has been impossible up until now because the light from the lasers used in conventional optical traps is too bright to allow single molecule florescence to be seen.

Matthew Lang, Polly Fordyce and Steven Block devised a new method, which uses special filters and specific fluorescence labels, to successfully combine the techniques of optical trapping and single-molecule fluorescence for the first time. They used this new method to simultaneously examine the structural and mechanical changes occurring as a small fragment of DNA was ripped apart.

The authors of this study, based at the University of Stanford, California, believe that their new technique will have a major impact in a wide range of biological investigations.

"We anticipate that this technique will have broad applicability to the study of fundamental biological questions"

Single molecule experiments allow scientists to study rare molecules that can be impossible to look at in complex mixture of chemicals found in the cells of our body. Many of these molecules may play important roles in the development of disease or are simply essential to maintenance of life. The published study provides another much-needed tool to help science improve our understanding of how our bodies work and what happens when they go wrong.

This article is available free of charge, in line with the publisher’s policy of open access to original research:

Gordon Fletcher | BioMed Central Limited
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>