Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teasing apart the molecules of life

24.02.2003


Researchers devise new technique and measure the forces required to unzip DNA



Fifty years after James Watson and Francis Crick’s publication of the structure of DNA, research in the latest issue of the Journal of Biology shows how scientists can now measure the forces needed to tear the DNA double helix apart. The work was carried out using the first successful simultaneous combination of two important techniques for looking at single molecules - single molecule fluorescence and optical trapping.
Optical trapping, or ’optical tweezers’, uses laser beams to counteract, and hence reveal, the tiny forces involved in the complex interactions between molecules. Single molecule fluorescence enables researchers to study biological systems on a molecule by molecule basis, by lighting up parts of the molecule in particular circumstances. The combination of the two methods applied to a single molecule has been impossible up until now because the light from the lasers used in conventional optical traps is too bright to allow single molecule florescence to be seen.

Matthew Lang, Polly Fordyce and Steven Block devised a new method, which uses special filters and specific fluorescence labels, to successfully combine the techniques of optical trapping and single-molecule fluorescence for the first time. They used this new method to simultaneously examine the structural and mechanical changes occurring as a small fragment of DNA was ripped apart.



The authors of this study, based at the University of Stanford, California, believe that their new technique will have a major impact in a wide range of biological investigations.

"We anticipate that this technique will have broad applicability to the study of fundamental biological questions"

Single molecule experiments allow scientists to study rare molecules that can be impossible to look at in complex mixture of chemicals found in the cells of our body. Many of these molecules may play important roles in the development of disease or are simply essential to maintenance of life. The published study provides another much-needed tool to help science improve our understanding of how our bodies work and what happens when they go wrong.

This article is available free of charge, in line with the publisher’s policy of open access to original research: http://www.biomedcentral.com/html/info/about/block01apress.html

Gordon Fletcher | BioMed Central Limited
Further information:
http://www.biomedcentral.com/info/about/pr-releases?pr=20030221b

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>