Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher explores tumors’ survival strategy

21.02.2003


Dr. Kouros Motamed is studying endothelial cells where they live, in the complex environment that provides, not only support and structure, but regulation and direction.


Dr. Kouros Motamed, vascular biologist at the Medical College of Georgia, is studying angiogenesis, the formation of new blood vessels, and how some tumors pirate this mechanism in order to survive.



As he studies these cells that line blood vessels, this vascular biologist at the Medical College of Georgia focuses on the proteins and growth factors that regulate their normal processes, including proliferation, differentiation, migration and death.

He wants to better understand how these cells interact with their environment because there are still many unanswered questions.


But he also wants to know because tumors sometimes commandeer these cells’ ability to grow new blood vessels that bring life-sustaining nutrients and oxygen. "For most tumors to become any larger than 2 to 3 millimeters (a small fraction of an inch) in diameter, they have to recruit blood vessels," said Dr. Motamed.

This new vessel growth, called angiogenesis, can be beneficial. An injury can throw an angiogenic switch, activating a previously quiet endothelial cell. "As a result of activation, the endothelial cell loses its contact with the matrix (the milieu cells live in), elongates and invades the surrounding, stromal tissue," Dr. Motamed said. The cell then begins to proliferate, forming the lumen through which blood will eventually flow, and recruits supporting cell types and matrix components to form a new, functional vascular bed that is believed to accelerate wound healing.

The fact that many tumors also activate angiogenesis to survive has helped make it a hot topic in science. Dr. Motamed, who came to MCG in September from The Hope Heart Institute in Seattle, has his eye on the role of basic fibroblast growth factor in promoting angiogenesis and a protein called SPARC, which seems to have multiple roles in cancer and new blood vessel formation.

"SPARC is a protein most abundant during tissue remodeling and repair," said Dr. Motamed. The protein has many functions including regulating the activity of growth factors. His studies are helping delineate the exact molecular mechanism through which SPARC inhibits basic fibroblast growth factor and vascular endothelial growth factor, both important to angiogenesis. Most tumor cells also express high levels of these growth factors. "In addition to making a host of factors themselves, cancer cells can also manipulate the cells of the host to facilitate their own proliferation and migration," Dr. Motamed said.

SPARC - secreted protein acidic and rich in cysteine - is commonly expressed in the healthy remodeling of tissue, such as during embryonic development and wound- healing. It also is expressed in varying degrees by different cancers; expression is increased in breast cancer, prostate cancer and melanoma and decreased in ovarian cancer. "The bottom line is that the environment that supports the growth of cancer cells and their development into tumors is regulated by a multitude of factors. One of these factors is SPARC or a class of proteins like it," Dr. Motamed said. Although the exact role(s) of SPARC in this complex process remains unclear - and may vary depending on the tissue in which it’s expressed - Dr. Motamed believes it’s an important role that takes him back to the cell matrix.

He’s looking at the SPARC expressed by prostate, breast and ovarian cancers to distinguish the role of SPARC expressed by these cancers and their supporting cells. Dr. Motamed, in collaboration with investigators at The Hope Heart Institute and the University of Texas Southwestern, will use the SPARC-less mouse model and a normal, control counterpart for these studies at MCG. He’ll also be looking at how the different tumors fare in the varying SPARC environments.

One of his many goals is to find the contribution of SPARC endogenous to the mouse, including exploring its potential for inhibiting and promoting tumors. It could be that SPARC’s more common role in inhibiting blood vessel formation is changed when tumors express yet another protein that cuts or cleaves SPARC, turning it into a promoter. It also could be that still other proteins cleave the cell matrix, releasing its previously dormant store of growth factors and, consequently, a huge burst of factors that can induce new blood vessel formation, he said.

"The school of thought is that there is a constant dialogue between the cancer cells and their so-called stromal cells, which are the supporting, non-cancerous cells within a tumor environment," Dr. Motamed said. "It’s very obvious that you have to find out the players that regulate tumor cells or, the opposite, inhibit the growth of tumor cells, in this milieu that contains the cancer cells and supporting cells. The more you find out about all of these regulatory elements, the better off you are in battling tumors and cancer."


###
Support for Dr. Motamed’s research includes a four-year Howard Temin Award from the National Cancer Institute.

The Medical College of Georgia is the state’s health sciences university and includes the Schools of Allied Health Sciences, Dentistry, Graduate Studies, Medicine and Nursing, MCG Hospital and Clinics and the Children’s Medical Center.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>