Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher explores tumors’ survival strategy

21.02.2003


Dr. Kouros Motamed is studying endothelial cells where they live, in the complex environment that provides, not only support and structure, but regulation and direction.


Dr. Kouros Motamed, vascular biologist at the Medical College of Georgia, is studying angiogenesis, the formation of new blood vessels, and how some tumors pirate this mechanism in order to survive.



As he studies these cells that line blood vessels, this vascular biologist at the Medical College of Georgia focuses on the proteins and growth factors that regulate their normal processes, including proliferation, differentiation, migration and death.

He wants to better understand how these cells interact with their environment because there are still many unanswered questions.


But he also wants to know because tumors sometimes commandeer these cells’ ability to grow new blood vessels that bring life-sustaining nutrients and oxygen. "For most tumors to become any larger than 2 to 3 millimeters (a small fraction of an inch) in diameter, they have to recruit blood vessels," said Dr. Motamed.

This new vessel growth, called angiogenesis, can be beneficial. An injury can throw an angiogenic switch, activating a previously quiet endothelial cell. "As a result of activation, the endothelial cell loses its contact with the matrix (the milieu cells live in), elongates and invades the surrounding, stromal tissue," Dr. Motamed said. The cell then begins to proliferate, forming the lumen through which blood will eventually flow, and recruits supporting cell types and matrix components to form a new, functional vascular bed that is believed to accelerate wound healing.

The fact that many tumors also activate angiogenesis to survive has helped make it a hot topic in science. Dr. Motamed, who came to MCG in September from The Hope Heart Institute in Seattle, has his eye on the role of basic fibroblast growth factor in promoting angiogenesis and a protein called SPARC, which seems to have multiple roles in cancer and new blood vessel formation.

"SPARC is a protein most abundant during tissue remodeling and repair," said Dr. Motamed. The protein has many functions including regulating the activity of growth factors. His studies are helping delineate the exact molecular mechanism through which SPARC inhibits basic fibroblast growth factor and vascular endothelial growth factor, both important to angiogenesis. Most tumor cells also express high levels of these growth factors. "In addition to making a host of factors themselves, cancer cells can also manipulate the cells of the host to facilitate their own proliferation and migration," Dr. Motamed said.

SPARC - secreted protein acidic and rich in cysteine - is commonly expressed in the healthy remodeling of tissue, such as during embryonic development and wound- healing. It also is expressed in varying degrees by different cancers; expression is increased in breast cancer, prostate cancer and melanoma and decreased in ovarian cancer. "The bottom line is that the environment that supports the growth of cancer cells and their development into tumors is regulated by a multitude of factors. One of these factors is SPARC or a class of proteins like it," Dr. Motamed said. Although the exact role(s) of SPARC in this complex process remains unclear - and may vary depending on the tissue in which it’s expressed - Dr. Motamed believes it’s an important role that takes him back to the cell matrix.

He’s looking at the SPARC expressed by prostate, breast and ovarian cancers to distinguish the role of SPARC expressed by these cancers and their supporting cells. Dr. Motamed, in collaboration with investigators at The Hope Heart Institute and the University of Texas Southwestern, will use the SPARC-less mouse model and a normal, control counterpart for these studies at MCG. He’ll also be looking at how the different tumors fare in the varying SPARC environments.

One of his many goals is to find the contribution of SPARC endogenous to the mouse, including exploring its potential for inhibiting and promoting tumors. It could be that SPARC’s more common role in inhibiting blood vessel formation is changed when tumors express yet another protein that cuts or cleaves SPARC, turning it into a promoter. It also could be that still other proteins cleave the cell matrix, releasing its previously dormant store of growth factors and, consequently, a huge burst of factors that can induce new blood vessel formation, he said.

"The school of thought is that there is a constant dialogue between the cancer cells and their so-called stromal cells, which are the supporting, non-cancerous cells within a tumor environment," Dr. Motamed said. "It’s very obvious that you have to find out the players that regulate tumor cells or, the opposite, inhibit the growth of tumor cells, in this milieu that contains the cancer cells and supporting cells. The more you find out about all of these regulatory elements, the better off you are in battling tumors and cancer."


###
Support for Dr. Motamed’s research includes a four-year Howard Temin Award from the National Cancer Institute.

The Medical College of Georgia is the state’s health sciences university and includes the Schools of Allied Health Sciences, Dentistry, Graduate Studies, Medicine and Nursing, MCG Hospital and Clinics and the Children’s Medical Center.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>