Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distance detection improves effect of spinal cord stimulation

20.02.2003


The effect of spinal cord stimulation, in chronic pain treatment, can be drastically improved using continuous distance detection. The strength of the stimulation pulses then depends on the distance measured between the electrodes and the spinal cord. In this way, negative side-effects belong to the past. These side-effects arise with a varying distance, causing diminished pain treatment in case of a distance that is too large, or unwanted sensations when the distance is too small. Emiel Dijkstra of the University of Twente developed a distance detection system. He finishes his PhD-research with the MESA+ research institute on February 27.



Spinal cord stimulation is effective in treatment of chronic pain. An electrode-array is implanted, sending short pulses to the spinal cord. This artificial nerve stimulation blocks certain pain signals. The electrodes have a fixed position, however, this means that the distance varies with movements of the patient. By measuring this distance along with the stimulation, the pulses can be adjusted continuously.

From MRI-scans, Dijkstra concludes that the distance can vary up to several millimeters. This has a direct effect on the signal reaching the spinal cord. With maximum distance, the signal can be too weak to have an effect. With minimum distance, the effect can be that the patient feels the pulses themselves, this is unpleasant as well. Using ultrasound, Dijkstra is now able to detect the distance. He therefore places a piezo-electric transducer on the electro-array.


This transducer has to face strict demands. It has to be able to distinguish between the spinal cord and the surrounding fluid, while the acoustic difference between them is small. Secondly, it has to be integrated along with the implantable electrodes. Its size therefore may not exceed 25 square millimetres, with a thickness of not more than two millimetres. And it has to be highly biocompatible: the human body has to accept this ‘intruder’.

In addition to these demands, the energy consumption must be close to zero. The electrode array is fed from outside the body, using radio signals, or a complete stimulation system is implanted in the abdomen region. In both cases, the distance detector may not consume substantial electric power.

Electric eals
The combination of electrodes, distance detection and control electronics provides a more comfortable and precise way of pain treatment. While in ancient Rome, already electric eals were used to treat pain, Dijkstra’s method is more friendly for the patient.

Emiel Dijkstra MscEE has performed his research under supervision of prof. Piet Bergveld within the MESA+ Institute of the University of Twente, and he was financially supported by Medtronic Inc., manufacturer of spinal cord stimulation electrodes.

Wiebe van der Veen | alfa
Further information:
http://www.mesaplus.utwente.nl/mutas/bios/
http://www.utwente.nl/nieuws/pers/cont_03-012.doc/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>