Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecological effects of climate change include human epidemics

18.02.2003


The link between climate and cholera, a serious health problem in many parts of the world, has become stronger in recent decades, according to a University of Michigan scientist who takes an ecological approach to understanding disease patterns. Mercedes Pascual, an assistant professor of ecology and evolutionary biology, discussed her work during a symposium Feb. 17 on the ecology of infectious diseases at the annual meeting of the American Association for the Advancement of Science.



In work published over the past three years, Pascual and coworkers at the University of Barcelona and the International Center for Diarrhoeal Disease Research in Bangladesh found evidence that El Nino-Southern Oscillation (ENSO), a major source of climate variability from year to year, influences cycles of cholera. They looked initially at climate and disease data from Bangladesh for the past two decades; more recently they compared those results with data from Bangladesh for the periods 1893-1920 and 1920-1940 to see whether the coupling between climate variability and cholera cycles has become stronger in recent decades. Their examination of the data, which relied on a suite of techniques called time series analysis, suggests that it has.

"We had known that ENSO plays a role in the variability of cholera, but our work revealed that the role of ENSO has intensified," says Pascual, who was named one of "The 50 Most Important Women in Science" by Discover magazine in November 2002. What’s more, the link is strongest during ENSO events, with cholera increasing after warm events and decreasing after cold events. In the years between events, the climate-cholera link breaks down.


With predictions that ENSO will become stronger and more variable in coming years under a global warming scenario, understanding how its connection to human disease changes will be increasingly important, says Pascual. Often, it’s difficult to tell whether disease cycles are driven by environmental factors or by processes intrinsic to disease transmission. Pascual and coworkers recently developed a method that makes it possible to distinguish between the two possibilities.

Pascual says her work is just one example of how principles and tools of ecology and evolutionary biology can aid understanding of disease patterns. For example, using techniques developed to study the movement of species or populations, researchers are studying the spread of diseases such as rabies. In addition, interactions among diseases can be analyzed similarly to interactions among species. And even such classic ecological subjects as competition have applications to disease, Pascual said. "When you have diseases that share hosts, it’s similar to having species that compete for a resource. One big question is how do they coexist?"

Another sign of growing interest in the ecology and evolutionary biology of disease is the trend for universities to offer courses on the subject, said Pascual, who is co-teaching a new undergraduate course, Evolutionary Biology and Human Disease, at the University of Michigan this semester.


The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853
E-mail: rossflan@umich.edu

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>