Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecological effects of climate change include human epidemics

18.02.2003


The link between climate and cholera, a serious health problem in many parts of the world, has become stronger in recent decades, according to a University of Michigan scientist who takes an ecological approach to understanding disease patterns. Mercedes Pascual, an assistant professor of ecology and evolutionary biology, discussed her work during a symposium Feb. 17 on the ecology of infectious diseases at the annual meeting of the American Association for the Advancement of Science.



In work published over the past three years, Pascual and coworkers at the University of Barcelona and the International Center for Diarrhoeal Disease Research in Bangladesh found evidence that El Nino-Southern Oscillation (ENSO), a major source of climate variability from year to year, influences cycles of cholera. They looked initially at climate and disease data from Bangladesh for the past two decades; more recently they compared those results with data from Bangladesh for the periods 1893-1920 and 1920-1940 to see whether the coupling between climate variability and cholera cycles has become stronger in recent decades. Their examination of the data, which relied on a suite of techniques called time series analysis, suggests that it has.

"We had known that ENSO plays a role in the variability of cholera, but our work revealed that the role of ENSO has intensified," says Pascual, who was named one of "The 50 Most Important Women in Science" by Discover magazine in November 2002. What’s more, the link is strongest during ENSO events, with cholera increasing after warm events and decreasing after cold events. In the years between events, the climate-cholera link breaks down.


With predictions that ENSO will become stronger and more variable in coming years under a global warming scenario, understanding how its connection to human disease changes will be increasingly important, says Pascual. Often, it’s difficult to tell whether disease cycles are driven by environmental factors or by processes intrinsic to disease transmission. Pascual and coworkers recently developed a method that makes it possible to distinguish between the two possibilities.

Pascual says her work is just one example of how principles and tools of ecology and evolutionary biology can aid understanding of disease patterns. For example, using techniques developed to study the movement of species or populations, researchers are studying the spread of diseases such as rabies. In addition, interactions among diseases can be analyzed similarly to interactions among species. And even such classic ecological subjects as competition have applications to disease, Pascual said. "When you have diseases that share hosts, it’s similar to having species that compete for a resource. One big question is how do they coexist?"

Another sign of growing interest in the ecology and evolutionary biology of disease is the trend for universities to offer courses on the subject, said Pascual, who is co-teaching a new undergraduate course, Evolutionary Biology and Human Disease, at the University of Michigan this semester.


The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853
E-mail: rossflan@umich.edu

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>