Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ecological effects of climate change include human epidemics


The link between climate and cholera, a serious health problem in many parts of the world, has become stronger in recent decades, according to a University of Michigan scientist who takes an ecological approach to understanding disease patterns. Mercedes Pascual, an assistant professor of ecology and evolutionary biology, discussed her work during a symposium Feb. 17 on the ecology of infectious diseases at the annual meeting of the American Association for the Advancement of Science.

In work published over the past three years, Pascual and coworkers at the University of Barcelona and the International Center for Diarrhoeal Disease Research in Bangladesh found evidence that El Nino-Southern Oscillation (ENSO), a major source of climate variability from year to year, influences cycles of cholera. They looked initially at climate and disease data from Bangladesh for the past two decades; more recently they compared those results with data from Bangladesh for the periods 1893-1920 and 1920-1940 to see whether the coupling between climate variability and cholera cycles has become stronger in recent decades. Their examination of the data, which relied on a suite of techniques called time series analysis, suggests that it has.

"We had known that ENSO plays a role in the variability of cholera, but our work revealed that the role of ENSO has intensified," says Pascual, who was named one of "The 50 Most Important Women in Science" by Discover magazine in November 2002. What’s more, the link is strongest during ENSO events, with cholera increasing after warm events and decreasing after cold events. In the years between events, the climate-cholera link breaks down.

With predictions that ENSO will become stronger and more variable in coming years under a global warming scenario, understanding how its connection to human disease changes will be increasingly important, says Pascual. Often, it’s difficult to tell whether disease cycles are driven by environmental factors or by processes intrinsic to disease transmission. Pascual and coworkers recently developed a method that makes it possible to distinguish between the two possibilities.

Pascual says her work is just one example of how principles and tools of ecology and evolutionary biology can aid understanding of disease patterns. For example, using techniques developed to study the movement of species or populations, researchers are studying the spread of diseases such as rabies. In addition, interactions among diseases can be analyzed similarly to interactions among species. And even such classic ecological subjects as competition have applications to disease, Pascual said. "When you have diseases that share hosts, it’s similar to having species that compete for a resource. One big question is how do they coexist?"

Another sign of growing interest in the ecology and evolutionary biology of disease is the trend for universities to offer courses on the subject, said Pascual, who is co-teaching a new undergraduate course, Evolutionary Biology and Human Disease, at the University of Michigan this semester.

The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853

Nancy Ross-Flanigan | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>