Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of living eye in real time now possible with optics technology

17.02.2003


UH Researchers Focus On Diagnosing Eye Disease Using Adaptive Optics



A new optics technology is providing scientists with real-time microscopic images of the living retina, and may allow doctors to focus in on earlier diagnosis and treatment of diseases such as diabetes and glaucoma.

University of Houston researchers are using a technology called adaptive optics to peer inside the eyes of human subjects and for the first time get clear, sharp images of features such as blood flow in the eye’s retina. Until now, clear images of the living retina were not possible because the eye’s own structure interferes with the imaging process.


“Everyone suffers from natural irregularities in the cornea and lens of the eye, and even in people with normal, 20/20 vision, these defects prevent the eye from focusing light from the world into a nice sharp image on the retina,” says Austin Roorda, assistant professor of optometry at the University of Houston. “Eye doctors have to look through these same defects when they examine a patient’s retina, and the image they see is not very clear, limiting the amount of information they can get.”

A clear view of the retina is key to the early diagnosis of diseases such as glaucoma, which produces changes in the nerves in the eye, and diabetes, which affects blood flow in the retina.

“The eye is a wonderful instrument, but its optics are not particularly good, and this has limited our ability to clearly see what’s happening in there,” Roorda says.

Using adaptive optics, researchers accurately measure the defects in the cornea and the lens and compensate for them to produce detailed microscopic images and video of human retinas. In his lab, Roorda and his colleagues have built a scanning laser ophthalmoscope, the only device of its kind that incorporates adaptive optics.

“We get a much clearer picture of the retina than any other technology can produce, with the added advantage that the data we get is in real time,” Roorda says.

Roorda’s scanning laser ophthalmoscope won’t be in clinics any time soon, but he says it’s a prototype for the next generation of such devices. He and colleagues at four other institutions, led by the University of Rochester, recently received a $10 million, five-year grant from the National Institutes of Health to build more adaptive optics devices.

Roorda will present information about his research Feb. 16 in Denver at the annual meeting of the American Association for the Advancement of Science.

During the past year, Roorda has examined normal eyes in about 30 people, and four people with medical conditions that affect the eyes. He and his UH team have seen capillaries – the smallest blood vessels in the retina – and the white blood cells flowing through them. Tracking the movement of white blood cells helps them measure the rate of blood flow, as well as monitor their specific behavior.

“Right now we’re focusing on understanding what normal eyes look like with this instrument. This is a whole new view of the retina, and we’re developing protocols for imaging patients,” Roorda says.

The UH researchers are working with a physician at the Texas Medical Center and plan to look at patients with diabetes, for example, to examine their blood flow dynamics. In diabetics, it is thought that white blood cells tend to be sticky and may move differently through the capillaries than they do in normal retinas. Roorda’s team also plans to look at glaucoma patients, whose retinal nerves have been changed by the disease, and people with changes or losses in their cone photoreceptors.

“We should be able to watch the progression of these types of diseases,” he says.

In the lab, Roorda’s test subject sits in front of the device, and his head is kept still by having the person bite down on a custom-fit mouthpiece mounted in place. The adaptive optics setup involves shining a weak laser into the subject’s dilated eye. The laser light reflects off the retina and is scattered back out of the eye, where it is picked up by a wavefront sensor. This component measures the defects in the lens and cornea and feeds that information back to a deformable mirror, which is the backbone of the device.

“The mirror is made of glass, which is flexible, and it is supported on its back surface by a grid of electronically controlled small pistons that ever-so-slightly change the mirror’s shape in such a way as to focus the scattered light into parallel rays. This, and a lot of sophisticated computer code, is what then produces the clear, corrected image,” Roorda says.

One of the future clinical applications of Roorda’s device might be microretinal surgery, where surgeons need a clear view of an area they would like to treat.

“The way we use our laser to scan the retina to produce an image, it may be possible to use the technique for treatment. While you’re imaging a microaneurysm, for example, if we could track that feature we may be able to then turn on a treatment laser and blast it with the same precision that we can see it,” he says.

Roorda earned his Ph.D. in physics at the University of Waterloo in Canada and began his work in adaptive optics as a post-doctoral researcher at the University of Rochester. He joined the UH faculty in 1998. His research is funded by the National Institutes of Health, as well as by the National Science Foundation through the Center for Adaptive Optics at the University of California at Santa Cruz.

SOURCE: Roorda, 713-743-1952; aroorda@uh.edu


About the University of Houston

The University of Houston, Texas’ premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 34,400 students.

Amanda Siegfried | University of Houston
Further information:
http://www.uh.edu/admin/media/nr/2003/022003/adaptiveopts021603.html
http://www.uh.edu/admin/media/sciencelist.html

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>