Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dealing with reams of data

17.02.2003


Scientists work toward unraveling gene expression in the brain



Using Web-based tools they developed to sift through reams of data, scientists from the Kennedy Krieger Institute and Johns Hopkins hope to unravel the genetics of neurological problems associated with Down syndrome, autism and lead poisoning.

Their search starts with microarrays, or so-called "gene chips," which measure the activity of tens of thousands of genes all at once. By analyzing the pattern of gene activity in brain tissue, the scientists hope to find genes that are more or less active than normal and that may, therefore, be involved in causing problems.


On Feb. 16 at the annual meeting of the American Association for the Advancement of Science, Jonathan Pevsner, Ph.D., will demonstrate how two tools they developed, called SNOMAD and DRAGON, can be used to find the needle in the haystack of microarray data. As an example, Pevsner applied the programs to microarray data from Down syndrome.

"In some conditions, like autism, the biological cause is still unclear, but even in Down syndrome, which we know is the result of having an extra copy of chromosome 21, we don’t know exactly what genes or processes lead to the neurological changes," says Pevsner, associate professor of neurology at Kennedy Krieger and an associate professor of neuroscience at the Johns Hopkins School of Medicine.

While it makes sense that all chromosome 21 genes would be more active than normal in Down syndrome, no one has ever proved it. In his presentation and in an upcoming issue of the journal Genomics, Pevsner will report that using microarrays (and DRAGON) showed that, indeed, as a group, chromosome 21 genes are dramatically overexpressed.

"There’s no smoking gun on chromosome 21 in our initial analysis, but further investigation might reveal specific genes that influence the severity of the condition," says Pevsner.

In addition to dealing with the complexity that comes with receiving a mountain of data from a microarray experiment, in many cases scientists interested in answering the biological question -- which genes are expressed differently -- may not have the mathematical or computational expertise to analyze and interpret the results to get an answer with meaning, notes Pevsner.

"To use microarrays effectively, you have to do both the biology and the math correctly," he says. "SNOMAD and DRAGON supplement other available analysis tools to help researchers make sense of their results. The bottom line, however, is that any result must be confirmed."

SNOMAD, or Standardization and Normalization of Microarray Data, was developed in 2001 by a graduate student in Pevsner’s lab, in conjunction with Scott Zeger, Ph.D., chair of biostatistics at the Johns Hopkins Bloomberg School of Public Health. The online computer program processes researchers’ microarray data to search for "signal" within the "noise" of normal variation in gene expression levels, says Pevsner.

DRAGON, or Database Referencing of Array Genes Online, ties the results of an individual microarray experiment to other available information. For example, DRAGON cross-references over- and under-expressed genes in a researcher’s microarray to five online databases, identifying the genes and pulling together what is already known about their functions and roles in disease. The program can also produce visual displays of the results -- graphs, charts, drawings -- that the researcher can manipulate to see -- really see -- how the results fit together.

"Microarrays are really an exploration, and at the end of the analysis we have to decide if we believe it or not," says Pevsner. "But even with the complexities inherent in the brain, we think microarrays can help improve understanding of neurological disorders."

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.kennedykrieger.org
http://pevsnerlab.kennedykrieger.org/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>