Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dealing with reams of data

17.02.2003


Scientists work toward unraveling gene expression in the brain



Using Web-based tools they developed to sift through reams of data, scientists from the Kennedy Krieger Institute and Johns Hopkins hope to unravel the genetics of neurological problems associated with Down syndrome, autism and lead poisoning.

Their search starts with microarrays, or so-called "gene chips," which measure the activity of tens of thousands of genes all at once. By analyzing the pattern of gene activity in brain tissue, the scientists hope to find genes that are more or less active than normal and that may, therefore, be involved in causing problems.


On Feb. 16 at the annual meeting of the American Association for the Advancement of Science, Jonathan Pevsner, Ph.D., will demonstrate how two tools they developed, called SNOMAD and DRAGON, can be used to find the needle in the haystack of microarray data. As an example, Pevsner applied the programs to microarray data from Down syndrome.

"In some conditions, like autism, the biological cause is still unclear, but even in Down syndrome, which we know is the result of having an extra copy of chromosome 21, we don’t know exactly what genes or processes lead to the neurological changes," says Pevsner, associate professor of neurology at Kennedy Krieger and an associate professor of neuroscience at the Johns Hopkins School of Medicine.

While it makes sense that all chromosome 21 genes would be more active than normal in Down syndrome, no one has ever proved it. In his presentation and in an upcoming issue of the journal Genomics, Pevsner will report that using microarrays (and DRAGON) showed that, indeed, as a group, chromosome 21 genes are dramatically overexpressed.

"There’s no smoking gun on chromosome 21 in our initial analysis, but further investigation might reveal specific genes that influence the severity of the condition," says Pevsner.

In addition to dealing with the complexity that comes with receiving a mountain of data from a microarray experiment, in many cases scientists interested in answering the biological question -- which genes are expressed differently -- may not have the mathematical or computational expertise to analyze and interpret the results to get an answer with meaning, notes Pevsner.

"To use microarrays effectively, you have to do both the biology and the math correctly," he says. "SNOMAD and DRAGON supplement other available analysis tools to help researchers make sense of their results. The bottom line, however, is that any result must be confirmed."

SNOMAD, or Standardization and Normalization of Microarray Data, was developed in 2001 by a graduate student in Pevsner’s lab, in conjunction with Scott Zeger, Ph.D., chair of biostatistics at the Johns Hopkins Bloomberg School of Public Health. The online computer program processes researchers’ microarray data to search for "signal" within the "noise" of normal variation in gene expression levels, says Pevsner.

DRAGON, or Database Referencing of Array Genes Online, ties the results of an individual microarray experiment to other available information. For example, DRAGON cross-references over- and under-expressed genes in a researcher’s microarray to five online databases, identifying the genes and pulling together what is already known about their functions and roles in disease. The program can also produce visual displays of the results -- graphs, charts, drawings -- that the researcher can manipulate to see -- really see -- how the results fit together.

"Microarrays are really an exploration, and at the end of the analysis we have to decide if we believe it or not," says Pevsner. "But even with the complexities inherent in the brain, we think microarrays can help improve understanding of neurological disorders."

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.kennedykrieger.org
http://pevsnerlab.kennedykrieger.org/

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>