Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine technique shows potential against common form of lung cancer

14.02.2003


In a demonstration of vaccine therapy’s potential for treating lung cancer, Dana-Farber Cancer Institute scientists and their associates report that a prototype vaccine boosted the natural immune response to tumors in a small group of patients with advanced non-small cell lung cancer (NSCLC). Moreover, the vaccine was found to be non-toxic and well-tolerated.



Published in the Feb. 15 issue of the Journal of Clinical Oncology, findings from the Phase I clinical trial will provide an impetus for further efforts to develop a vaccine against NSCLC, a difficult-to-treat condition that accounts for roughly 80 percent of all lung cancer cases. (Phase I trials are designed primarily to assess the safety of an experimental treatment.)

"This work represents a new approach to a vaccine for lung cancer patients,” says senior author Glenn Dranoff, MD, of Dana-Farber. "We’re still at an early stage, but the results of this study are encouraging. They offer a ’proof of principle’ that this technique can strengthen the normal immune response to NSCLC tumors and will help form the basis for testing the vaccine in patients with earlier stage lung cancer."


The technique was originally developed for patients with advanced melanoma, a form of cancer that begins in the skin but can be deadly if allowed to spread to other parts of the body.

The researchers created the melanoma vaccine by removing a portion of a patient’s tumor and using specially equipped viruses to insert a gene known as GM-CSF into the tumor cells. After being radiated and injected into the patient, the manipulated tumor cells began producing the granulocyte-macrophage colony-stimulating factor (GM-CSF) protein, which acted as a magnet for an immune system attack on tumor cells. As the researchers had hoped, the vaccine elicited a potent, long-lasting immune response targeted at the melanoma tumor cells and produced only minor side effects.

In the lung cancer study, researchers developed vaccines for 34 of the 35 enrolled patients with metastatic, or spreading, NSCLC. Nine of these patients had to withdraw from the study after their disease progressed rapidly, but researchers found heightened levels of immune-system cells in 18 of 25 patients whose condition could be assessed after vaccination. Tumor samples removed after vaccination showed infiltration by immune-system cells and tumor-cell death in three of six patients. Side effects were minor, mostly involving irritation at the site of the vaccine injection.

Two patients, the removal of whose tumors for vaccine preparation left them with no evidence of the disease, remained disease-free more than three years after vaccination. Five patients had periods of stable disease ranging from three to 33 months.

"The results demonstrate that the technique can raise antitumor immunity in some patients with NSCLC," states Dranoff, who is also an associate professor of medicine at Harvard Medical School. "It is important to keep these findings in proper perspective: they are promising but still preliminary. More research needs to be done to see if these results occur in larger studies and in people with earlier stages of NSCLC."

Ravi Salgia, MD, PhD, of Dana-Farber, and Thomas Lynch, MD, of Massachusetts General Hospital, were first authors of the paper. Other contributors are based at Dana-Farber, Children’s Hospital Boston, Massachusetts General Hospital, and Cell Genesys of Foster City, Calif.



Funding for the study was provided by the National Institutes of Health, the Cancer Research Institute, the Leukemia and Lymphoma Society, and Cell Genesys.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.


Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>