Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine technique shows potential against common form of lung cancer

14.02.2003


In a demonstration of vaccine therapy’s potential for treating lung cancer, Dana-Farber Cancer Institute scientists and their associates report that a prototype vaccine boosted the natural immune response to tumors in a small group of patients with advanced non-small cell lung cancer (NSCLC). Moreover, the vaccine was found to be non-toxic and well-tolerated.



Published in the Feb. 15 issue of the Journal of Clinical Oncology, findings from the Phase I clinical trial will provide an impetus for further efforts to develop a vaccine against NSCLC, a difficult-to-treat condition that accounts for roughly 80 percent of all lung cancer cases. (Phase I trials are designed primarily to assess the safety of an experimental treatment.)

"This work represents a new approach to a vaccine for lung cancer patients,” says senior author Glenn Dranoff, MD, of Dana-Farber. "We’re still at an early stage, but the results of this study are encouraging. They offer a ’proof of principle’ that this technique can strengthen the normal immune response to NSCLC tumors and will help form the basis for testing the vaccine in patients with earlier stage lung cancer."


The technique was originally developed for patients with advanced melanoma, a form of cancer that begins in the skin but can be deadly if allowed to spread to other parts of the body.

The researchers created the melanoma vaccine by removing a portion of a patient’s tumor and using specially equipped viruses to insert a gene known as GM-CSF into the tumor cells. After being radiated and injected into the patient, the manipulated tumor cells began producing the granulocyte-macrophage colony-stimulating factor (GM-CSF) protein, which acted as a magnet for an immune system attack on tumor cells. As the researchers had hoped, the vaccine elicited a potent, long-lasting immune response targeted at the melanoma tumor cells and produced only minor side effects.

In the lung cancer study, researchers developed vaccines for 34 of the 35 enrolled patients with metastatic, or spreading, NSCLC. Nine of these patients had to withdraw from the study after their disease progressed rapidly, but researchers found heightened levels of immune-system cells in 18 of 25 patients whose condition could be assessed after vaccination. Tumor samples removed after vaccination showed infiltration by immune-system cells and tumor-cell death in three of six patients. Side effects were minor, mostly involving irritation at the site of the vaccine injection.

Two patients, the removal of whose tumors for vaccine preparation left them with no evidence of the disease, remained disease-free more than three years after vaccination. Five patients had periods of stable disease ranging from three to 33 months.

"The results demonstrate that the technique can raise antitumor immunity in some patients with NSCLC," states Dranoff, who is also an associate professor of medicine at Harvard Medical School. "It is important to keep these findings in proper perspective: they are promising but still preliminary. More research needs to be done to see if these results occur in larger studies and in people with earlier stages of NSCLC."

Ravi Salgia, MD, PhD, of Dana-Farber, and Thomas Lynch, MD, of Massachusetts General Hospital, were first authors of the paper. Other contributors are based at Dana-Farber, Children’s Hospital Boston, Massachusetts General Hospital, and Cell Genesys of Foster City, Calif.



Funding for the study was provided by the National Institutes of Health, the Cancer Research Institute, the Leukemia and Lymphoma Society, and Cell Genesys.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.


Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>