Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knee ’scaffold’ study offers new hope for injury victims

13.02.2003


Scientists from the University of Leicester are taking revolutionary research further with the potential to offer new hope for knee-injury victims.



They are following up international research that aims to improve knee cartilage repair techniques, termed ‘chrondrocyte implantation’. The procedure, developed in Sweden ten years ago, involves growing a patient’s knee cartilage cells in a laboratory, which are then implanted through open knee surgery. Recent exciting developments revolve around the materials or ‘scaffolds’ that the cells are grown on. The scaffold is inserted into the knee with the seeded cells growing on it, and disintegrates slowly once the knee’s cartilage cells have become established.

Dr Paul Jenkins from the Department of Chemistry at the University of Leicester, and orthopaedic surgeon Dr Mike Harding from the University’s Department of Orthopaedic Surgery at Glenfield Hospital are collaborating to find the perfect biodegradeable polymer scaffold.


Dr Jenkins said: “We are using a polymer that is based on hyaluronic acid, which has great potential, because it degrades to an acid that is naturally present as a lubricant in all of our joints. The scaffold must be adhesive so that it stays in place inside the knee until enzymes in the knee degrade it. Probably the best known scaffold material is the benzyl ester of hyaluronic acid is extremely sticky when the chrondrocyte cells are growing in it. Our aim is to prepare and test new derivatives of hyaluronic acid to produce even better biodegradable matrix materials.”

Mr Harding said: “Cartilage tissue is mostly composed of a stiff, spongy matrix material produced by the cartilage cells. A property of the scaffold should be that it promotes the configuration of cartilage cells into the matrix shape. We are currently exploring the growth of cells onto different polymer scaffolds.”

The research is in the experimental stages, and has not yet been clinically tested. If the material proves to be a successful cartilage scaffold, extensive trials will be needed to allow it to be clinically tested for its reliability as a general surgical procedure for damaged knees.

Ather Mirza | alfa

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>