Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knee ’scaffold’ study offers new hope for injury victims

13.02.2003


Scientists from the University of Leicester are taking revolutionary research further with the potential to offer new hope for knee-injury victims.



They are following up international research that aims to improve knee cartilage repair techniques, termed ‘chrondrocyte implantation’. The procedure, developed in Sweden ten years ago, involves growing a patient’s knee cartilage cells in a laboratory, which are then implanted through open knee surgery. Recent exciting developments revolve around the materials or ‘scaffolds’ that the cells are grown on. The scaffold is inserted into the knee with the seeded cells growing on it, and disintegrates slowly once the knee’s cartilage cells have become established.

Dr Paul Jenkins from the Department of Chemistry at the University of Leicester, and orthopaedic surgeon Dr Mike Harding from the University’s Department of Orthopaedic Surgery at Glenfield Hospital are collaborating to find the perfect biodegradeable polymer scaffold.


Dr Jenkins said: “We are using a polymer that is based on hyaluronic acid, which has great potential, because it degrades to an acid that is naturally present as a lubricant in all of our joints. The scaffold must be adhesive so that it stays in place inside the knee until enzymes in the knee degrade it. Probably the best known scaffold material is the benzyl ester of hyaluronic acid is extremely sticky when the chrondrocyte cells are growing in it. Our aim is to prepare and test new derivatives of hyaluronic acid to produce even better biodegradable matrix materials.”

Mr Harding said: “Cartilage tissue is mostly composed of a stiff, spongy matrix material produced by the cartilage cells. A property of the scaffold should be that it promotes the configuration of cartilage cells into the matrix shape. We are currently exploring the growth of cells onto different polymer scaffolds.”

The research is in the experimental stages, and has not yet been clinically tested. If the material proves to be a successful cartilage scaffold, extensive trials will be needed to allow it to be clinically tested for its reliability as a general surgical procedure for damaged knees.

Ather Mirza | alfa

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>