Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Hope For Preventing Major Problems Of The Retina

13.02.2003


Study findings may offer prevention for avoiding those annoying spots caused by macular degeneration



The primary function of the retina is to capture light and initiate neural signals. The retina contains the photoreceptors, which are the site of sensory transduction in the visual pathway. Major landmarks in the retina are the fovea and macula, where light has a direct pathway to the receptors. An interruption of the blood supply to these landmarks can lead to age-related macular degeneration and diabetes, the cause of severe visual problems.

Dopamine is an intermediate in tyrosine metabolism and precursor of norepinephrine and epinephrine; it accounts for 90 percent of the catecholamines; its presence in the central nervous system and localization in the basal ganglia (caudate and lentiform nuclei) suggest that dopamine may have other functions. Now a new research study reveals that the body’s dopaminergic system plays a role in the regulation of retinal blood flow in the body. In addition, their data presents evidence for an the diminishing effect of dopamine on the pathways coupling sensory input to vascular response.


Dopaminergic functions in the eye are complex and affect several ocular tissues. These include transmitter effects and impacts on intraocular (within the eyeball) pressure (IOP) and ocular blood flow. It is known from several tissues that vascular effects of dopamine are not only mediated via specific dopamine receptors but also by influencing other effector pathways like catecholamine receptors, a major responder to stress.

Vascular dopaminergic effects in the eye in past studies have revealed that dopamine antagonists (domperidone and haloperidol) increase ocular blood flow in rabbits. Other dopamine antagonists had similar effects, whereas dopamine agonists did not affect beating ocular blood flow. Dopamine has been investigated extensively in glaucoma research. One previous effort found that D1 agonists (when combined with receptors initiate drug action) increase pressure within the eye, where D1 antagonists decrease IOP; D2 agents have opposite effects. Dopamine also has an important role in sensory processing. As a neurotransmitter, it is involved in regulating the rod pathway. However, dopamine actions are not restricted to the transmission of nerve impulses. It is also used as a neuromodulator distributed diffusely in the outer retina during light adaptation. The modulatory functions include horizontal cell and photoreceptor coupling to change the receptive field organization. A direct connection exists between sensory input and retinal blood flow. Diffuse luminance flicker stimuli increase retinal vessel diameter in humans. However, the how this pathway works is still elusive.

A New Study

A new study examines the effect of dopamine on retinal vessel diameters and its modulatory effect on flicker-induced vasodilatation, or widening of the vessel’s tubes. Local retinal vascular effects were studied in healthy human subjects after intravenous administration of dopamine. The authors of the study, “Effects of Dopamine on Human Retinal Vessel Diameter and its Modulation During Flicker Stimulation,” are Karl-Heinz Huemer, Gerhard Garhöfer, Claudia Zawinka, Elisabeth Golestani, Brigitte Litschauer, Leopold Schmetterer, and Guido T. Dorner, all from the University of Vienna Medical School, Vienna, Austria. Their findings appear in the January 2003 edition of the American Journal of Physiology—Heart and Circulatory Physiology.

Methodology

The research entailed a randomized, subject-blinded, placebo and time-controlled, two-way crossover study in 12 healthy male subjects. Placebo or dopamine was administered on two separate study days. After saline infusion, dopamine hydrochloride was infused in three consecutive doses. Plasma levels of dopamine were determined at each perfusion step. Arterial and venous retinal vessel diameters were measured with the use of a Zeiss retinal vessel analyzer. Diffuse luminance flicker stimuli of eight Hz were applied for 60 seconds. Blood pressure and pulse rate were monitored.

Results

Flicker stimulation (8 Hz) increased retinal vessel diameters under basal conditions. The response to 8-Hz flicker light was significantly reduced by dopamine administration. In addition, dopamine slightly but significantly increased retinal vessel diameters. Dopamine hydrochloride significantly increased systolic but not diastolic or mean arterial pressure.

For the first time, evidence exists displaying the for dopaminergic effects on retinal vessels in humans. This indicates that the dopaminergic system plays a role in the regulation of retinal blood flow in vivo. In addition, their data present evidence for an attenuating effect of dopamine on the pathways coupling sensory input to vascular response. The results also reveal that dopamine significantly increases vessel diameters of retinal arteries and veins in a dose-dependent manner. Their finding is that dopamine increases retinal vessel diameters in vivo is an indicator that dopamine probably has a local effect on retinal vessels (also supported by data showing a high density of D1 receptor antibodies in rabbit retinal vessels).

Conclusions

This study finds reveals that flicker response in both retinal arteries and veins is diminished by dopamine. Although this indicates a role of dopamine in the regulation of retinal vascular tone, it does not necessarily prove a crucial role of dopamine in the neuronal pathway regulating this neurovascular response. Their data are, however, compatible with results from many studies showing dopamine release during light-to-dark transitions and during photic stimulation.

On the basis of these previous data, the researchers hypothesize that dopamine increases during flicker-stimulation in the present experiments. Consequently, exogenous administration of dopamine blunts flicker-induced vasodilatation because vessels are already predilated via the dopamine pathway. In conclusion, their data indicate a dopaminergic contribution to retinal vascular tone in the human retina.

Dopamine appears to play a role in flicker-induced vasodilatation. This could implicate possible roles of dopaminergic agents in alleviating the reduction of blood to the retina, thereby saving thousands of Americans from future vision problems.


Source: January 2003 edition of the American Journal of Physiology—Heart and Circulatory Physiology.

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Contact: Donna Krupa: 703.527.7357
Cell: 703.967.2751 or
djkrupa1@aol.com

Donna Krupa | The American Physiological Socie

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>