Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Density Determines Extent Of Damage Caused By Cigarette Smoke Exposure

13.02.2003


New findings may offer roadmap to predicting how the body will respond to a deadly habit



First- or second-hand exposure to cigarettes can lead to a variety of diseases, including tissue destruction found in pulmonary emphysema and osteoporosis. Also included among cigarette smoking-induced diseases are disorders in which an excessive deposition of fibrotic scar occurs, such as with atherosclerosis and idiopathic pulmonary fibrosis.

Collagen is the major protein of the white fibers found in connective tissue, cartilage, and bone. It comprises a family of genetically distinct molecules, all of which have a unique triple helix configuration of three polypeptide subunits known as “chains.” At least 13 types of collagen have been identified, each with a different polypeptide chain. Fibroblasts, spindle-shaped cells with cytoplasmic processes present in connective tissue, are capable of forming collagen fibers. The effect of smoking on this physiological process is undetermined.


The Study

A new study has sought to determine whether the effects of cigarette smoke on the contraction of fibroblast-populated collagen gels is dependent on cell density. This research attempted to demonstrate density-dependent effects, and explore the mechanisms by which smoke exerts differential effects by determining the effect of cigarette smoke exposure (CSE) on the release of transforming growth factor and PGE2, mediators that possibly function as local regulators of collagen gel contraction.

The authors of the study, “Effect of Cigarette Smoke on Fibroblast-mediated Gel Contraction is Dependent on Cell Density,” are Hangjun Wang, from Mount Sinai Hospital, Toronto, Canada; Xiangde Liu, Fu-Qiang Wen, Debra J. Romberger, John R. Spurzem, and Stephen I. Rennard, from the University of Nebraska Medical Center, Omaha, NE; Takeshi Umino from Tokyo Medical and Dental University, Japan; Tadashi Kohyama, Department of Respiratory Medicine, University of Tokyo, Japan; Yun Kui Zhu, Department of Respiratory Diseases, Jincheng Hospital, Lanzhou, China; and Hui Jung Kim, Department of Internal Medicine, Seoul Adventist Hospital, Seoul, Korea. Their findings appear in the January 2003 edition of the American Journal of Physiology—Lung Cellular and Molecular Physiology.

Methodology

The experiment consisted of the following elements:

The researchers selected type I collagen gels made from collagen extracted from rat tail tendons. Tendons were excised from rat tails, and the tendon sheath and other connective tissues were carefully removed. Type I collagen was extracted; protein concentration was determined by weighing a lyophilized aliquot from each lot of collagen solution. Anti-TGF-â neutralizing antibody, which showed greater than two percent cross-reactivity with human TGF-â2 and TGF-â3 and did not cross-react with other growth factors, and anti-immunoglobulin were used.

CSE was obtained by combusting one cigarette without filter with a modified syringe-driven device. The smoke was bubbled through 25 ml of serum-free DMEM glucose. Human fibroblasts were obtained, and cells were cultured on tissue culture dishes with DMEM supplemented. Cells were cultured at 37°C in a humidified atmosphere of 5 percent CO2 and passaged once a week at a 1:3 ratio. Fibroblasts were used between the 14th and 20th passages. Cell suspensions, routinely added last, were added to achieve several fibroblast cell densities.

To investigate the effect of anti-TGF antibody on fibroblast-mediated gel contraction, the researchers added TGF antibody (10 g/ml) to the culture media after gels were released. Antihuman IgG antibody was used as control. To measure TGF-â1, samples were assayed both with and without acidification and neutralization to convert the latent form of TGF-â1 to active forms. TGF-â1 was quantified by an ELISA test.

Results

Five percent CSE inhibited the contraction of collagen gels populated by fibroblasts at low density but augmented contraction of those populated by fibroblasts at high density. The inhibitory effects of 10 percent CSE were greater than that of five percent, but much more notably so in the low-density cells than in the high-density cells. CSE inhibited production of fibronectin in low-density cultures but stimulated fibronectin production in high-density cultures. Similarly, TGF-â1 release was inhibited in low-density cultures but trended toward stimulation in high-density cultures. Perhaps more importantly, five percent CSE appeared to augment the release of active TGF-â in high-density cultures, while having no detectable effect on active TGF-â in low-density cultures. The effects on TGF-â production were paralleled by effects on TGF-â mRNA.

The augmented contraction observed in high density cultures is likely due to activity of TGF as antibodies to TGF blocked this response. Contraction of gels composed of native collagen fibers in which fibroblasts are cultured has been used as a model of wound repair and tissue fibrosis. Like both scars and fibrotic tissues, fibroblast-populated collagen gels contract. The degree of contraction depends on a number of factors, including the concentration of collagen in the gel, the presence of serum or exogenous growth factors, and, importantly, the density of fibroblasts within the gels. Gels cultured with a higher density of fibroblasts contract to a greater degree.

Conclusions

The findings suggest that multiple components of cigarette smoke may have interacting toxic effects. The extent to which these components reach fibroblasts depends on their interaction with a variety of components present between the inhaled air stream and the tissue cells. This includes the surface layer, the epithelial cells, and components in the interstitial matrix, including factors derived from the circulation system. These lung structures have considerable capacity to detoxify cigarette smoke. Airway epithelial cells, for example, are capable of metabolizing xenobiotics. The toxicity of smoke on fibroblasts in vivo, therefore, depends not only on the ability of smoke-derived toxins to injure fibroblasts, but also on the defense mechanisms present in the lung that can serve to mitigate the effects of smoke.

Remodeling of tissues is a process that likely requires collaborative interaction among cells distributed within a tissue. Such processes are ideally suited for regulation and coordination through a variety of cell-cell communication mechanisms. As the reduction of these mediators will vary with cell density, it seems likely that paracrine modulation of tissue repair will be highly dependent on cell density. Finally, the fibroblasts are not the only source of TGF within the lung, and fibroblasts can be modulated by many factors in addition to TGF. The effect of cigarette smoke within the tissue, therefore, will depend not only on the effect of cigarette smoke on fibroblasts but also on the actions of other cells within the lung.

This study demonstrates that CSE modulation of contraction of three-dimensional collagen gels populated by fibroblasts depends on cell density. Inhibition of contraction occurs at low cell density due to inhibition of fibronectin production. In contrast, in high-density cultures, CSE augments contraction likely through increased release of active TGF. These density-dependent effects may account for the varied types of pathology that can result from cigarette smoke exposure.

Source: January 2003 edition of the American Journal of Physiology—Lung Cellular and Molecular Physiology.



The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.


Contact: Donna Krupa: 703.527.7357
Cell: 703.967.2751 or
djkrupa1@aol.com

Donna Krupa | The American Physiological Socie
Further information:
http://www.the-aps.org/press_room/journal/pr2-4-1.htm

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>