Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic "Signature" Linked to Severe Lupus Symptoms

12.02.2003


A team of scientists supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and other parts of the National Institutes of Health (NIH) and the private sector, have discovered a genetic "signature" present in some patients with systemic lupus erythematosus (SLE) who develop such life-threatening complications as blood disorders, central nervous system damage and kidney failure.



Using DNA microarrays — small silicon chips that contain tiny amounts of thousands of known genes — to carry out a technique called gene expression profiling, Timothy W. Behrens, M.D., of the University of Minnesota, and his colleagues from North Shore Long Island Jewish Research Institute, analyzed thousands of genes in the peripheral blood cells of 48 lupus patients and 42 healthy controls. Surprisingly, 14 of the thousands of genes studied were linked to a subset of SLE patients with severe disease. In addition, 161 of the genes studied showed different expression patterns in SLE patients compared with healthy controls.

The 14 genes, referred to collectively as the IFN (interferon) expression signature, are turned on by the activity of interferon, a complex family of proteins involved in the regulation of immune responses. "Patients with severe SLE consistently showed higher expression levels of this IFN signature," says Dr. Behrens. The data, he says, provide strong support for developing new therapies to block IFN pathways in patients with severe lupus, and the pattern of gene expression in blood cells may be useful in identifying patients most likely to benefit from these new therapies. Gene expression profiling in blood cells may also be useful in identifying disease pathways in other autoimmune and inflammatory disorders.


"Identifying lupus patients at particular risk for severe disease before these complications arise has enormous implications for the early diagnosis and treatment of this potentially devastating disease," says NIAMS Director Stephen I. Katz, M.D., Ph.D.

Systemic lupus erythematosus (SLE), or lupus, is a chronic, inflammatory, autoimmune disease. Its symptoms range from unexplained fever, swollen joints, and skin rashes to severe organ damage of the kidneys, lungs, or central nervous system. Lupus is difficult to diagnose because it is different for every person who has it, and it affects women nine times more often than men.

Supporters of this research include: The NIH’s National Center on Minority Health and Health Disparities, National Institute of Allergy and Infectious Diseases, and Office of Research on Women’s Health; the Minnesota Lupus Foundation; and the Alliance for Lupus Research.

To contact Dr. Behrens, call Brenda Hudson, Media Relations Associate at the University of Minnesota, at (612) 624-5680. To contact researchers at North Shore Long Island Jewish Research Institute, call Marlena Kern, Project Coordinator, at (516) 562-1542.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases, the training of basic and clinical scientists to carry out this research, and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

Reference: Baechler, E, Batliwalla F, Karypis, G, Gaffney P, Ortmann W, Espe K, Shark K, Grande W, Hughes K, Kapur V, Gregersen P, Behrens T. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. The study will appear in the online edition of the journal Proceedings of the National Academy of Sciences (PNAS) the week of February 10th.

CONTACT:
Liz Freedman
(301) 496-8190

Liz Freedman | EurekAlert!
Further information:
http://www.nih.gov/news/pr/feb2003/niams-11.htm
http://www.nih.gov/niams

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>