Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic "Signature" Linked to Severe Lupus Symptoms

12.02.2003


A team of scientists supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and other parts of the National Institutes of Health (NIH) and the private sector, have discovered a genetic "signature" present in some patients with systemic lupus erythematosus (SLE) who develop such life-threatening complications as blood disorders, central nervous system damage and kidney failure.



Using DNA microarrays — small silicon chips that contain tiny amounts of thousands of known genes — to carry out a technique called gene expression profiling, Timothy W. Behrens, M.D., of the University of Minnesota, and his colleagues from North Shore Long Island Jewish Research Institute, analyzed thousands of genes in the peripheral blood cells of 48 lupus patients and 42 healthy controls. Surprisingly, 14 of the thousands of genes studied were linked to a subset of SLE patients with severe disease. In addition, 161 of the genes studied showed different expression patterns in SLE patients compared with healthy controls.

The 14 genes, referred to collectively as the IFN (interferon) expression signature, are turned on by the activity of interferon, a complex family of proteins involved in the regulation of immune responses. "Patients with severe SLE consistently showed higher expression levels of this IFN signature," says Dr. Behrens. The data, he says, provide strong support for developing new therapies to block IFN pathways in patients with severe lupus, and the pattern of gene expression in blood cells may be useful in identifying patients most likely to benefit from these new therapies. Gene expression profiling in blood cells may also be useful in identifying disease pathways in other autoimmune and inflammatory disorders.


"Identifying lupus patients at particular risk for severe disease before these complications arise has enormous implications for the early diagnosis and treatment of this potentially devastating disease," says NIAMS Director Stephen I. Katz, M.D., Ph.D.

Systemic lupus erythematosus (SLE), or lupus, is a chronic, inflammatory, autoimmune disease. Its symptoms range from unexplained fever, swollen joints, and skin rashes to severe organ damage of the kidneys, lungs, or central nervous system. Lupus is difficult to diagnose because it is different for every person who has it, and it affects women nine times more often than men.

Supporters of this research include: The NIH’s National Center on Minority Health and Health Disparities, National Institute of Allergy and Infectious Diseases, and Office of Research on Women’s Health; the Minnesota Lupus Foundation; and the Alliance for Lupus Research.

To contact Dr. Behrens, call Brenda Hudson, Media Relations Associate at the University of Minnesota, at (612) 624-5680. To contact researchers at North Shore Long Island Jewish Research Institute, call Marlena Kern, Project Coordinator, at (516) 562-1542.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases, the training of basic and clinical scientists to carry out this research, and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

Reference: Baechler, E, Batliwalla F, Karypis, G, Gaffney P, Ortmann W, Espe K, Shark K, Grande W, Hughes K, Kapur V, Gregersen P, Behrens T. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. The study will appear in the online edition of the journal Proceedings of the National Academy of Sciences (PNAS) the week of February 10th.

CONTACT:
Liz Freedman
(301) 496-8190

Liz Freedman | EurekAlert!
Further information:
http://www.nih.gov/news/pr/feb2003/niams-11.htm
http://www.nih.gov/niams

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>