Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic "Signature" Linked to Severe Lupus Symptoms

12.02.2003


A team of scientists supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and other parts of the National Institutes of Health (NIH) and the private sector, have discovered a genetic "signature" present in some patients with systemic lupus erythematosus (SLE) who develop such life-threatening complications as blood disorders, central nervous system damage and kidney failure.



Using DNA microarrays — small silicon chips that contain tiny amounts of thousands of known genes — to carry out a technique called gene expression profiling, Timothy W. Behrens, M.D., of the University of Minnesota, and his colleagues from North Shore Long Island Jewish Research Institute, analyzed thousands of genes in the peripheral blood cells of 48 lupus patients and 42 healthy controls. Surprisingly, 14 of the thousands of genes studied were linked to a subset of SLE patients with severe disease. In addition, 161 of the genes studied showed different expression patterns in SLE patients compared with healthy controls.

The 14 genes, referred to collectively as the IFN (interferon) expression signature, are turned on by the activity of interferon, a complex family of proteins involved in the regulation of immune responses. "Patients with severe SLE consistently showed higher expression levels of this IFN signature," says Dr. Behrens. The data, he says, provide strong support for developing new therapies to block IFN pathways in patients with severe lupus, and the pattern of gene expression in blood cells may be useful in identifying patients most likely to benefit from these new therapies. Gene expression profiling in blood cells may also be useful in identifying disease pathways in other autoimmune and inflammatory disorders.


"Identifying lupus patients at particular risk for severe disease before these complications arise has enormous implications for the early diagnosis and treatment of this potentially devastating disease," says NIAMS Director Stephen I. Katz, M.D., Ph.D.

Systemic lupus erythematosus (SLE), or lupus, is a chronic, inflammatory, autoimmune disease. Its symptoms range from unexplained fever, swollen joints, and skin rashes to severe organ damage of the kidneys, lungs, or central nervous system. Lupus is difficult to diagnose because it is different for every person who has it, and it affects women nine times more often than men.

Supporters of this research include: The NIH’s National Center on Minority Health and Health Disparities, National Institute of Allergy and Infectious Diseases, and Office of Research on Women’s Health; the Minnesota Lupus Foundation; and the Alliance for Lupus Research.

To contact Dr. Behrens, call Brenda Hudson, Media Relations Associate at the University of Minnesota, at (612) 624-5680. To contact researchers at North Shore Long Island Jewish Research Institute, call Marlena Kern, Project Coordinator, at (516) 562-1542.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases, the training of basic and clinical scientists to carry out this research, and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

Reference: Baechler, E, Batliwalla F, Karypis, G, Gaffney P, Ortmann W, Espe K, Shark K, Grande W, Hughes K, Kapur V, Gregersen P, Behrens T. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. The study will appear in the online edition of the journal Proceedings of the National Academy of Sciences (PNAS) the week of February 10th.

CONTACT:
Liz Freedman
(301) 496-8190

Liz Freedman | EurekAlert!
Further information:
http://www.nih.gov/news/pr/feb2003/niams-11.htm
http://www.nih.gov/niams

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>