Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method of Controlled Drug Release

11.02.2003


Researchers in Oxford University’s Inorganic Chemistry Laboratory have found that they can intercalate a range of pharmaceutically active molecules between the layers of a layered inorganic host.



While working on the ion-exchange abilities of a family of inorganic materials known as Layered Double Hydroxides (LDHs), researchers have recognised that many commonly prescribed drugs and other over-the-counter medicines are either anions or can be conveniently and reversibly converted into an anion form. Research revealed that addition of one of these LDHs to a solution of a chosen pharmaceutical in water at room temperature results in intercalation of the these molecules between the sheets of the host structure. The LDHs are able to swell by up to 20Å to accommodate the size of the new guest molecules.

Certain drugs require controlled release and/or amelioration of side effects. LDHs already have medicinal properties in their own right as antacid and antipepsin agents. Propriety antacids products such as Talcid™ and Altacite™ contain the LDH [Mg6Al2(OH)16]CO3.


To date, the researchers have shown that compounds such Diclofenac, Ibuprofen, Naproxen, and Gemfibrozil intercalate rapidly into LDHs. The researchers are then able to quantitatively recover these molecules on demand. At the moment, drug release can be achieved by either dissolving the entire drug/LDH composite in dilute acid or by adding the drug/LDH to a phosphate buffer at pH 7. Preliminary kinetics experiments using phosphate buffers show that these drugs can be released back into solution in 1-3 hours at 37 °C.

Apart from the potential of using these materials to deliver drugs in vivo, the host itself could have additional benefits. It will be possible to control the point of release and pharmokinetic profile by selection of the metals ions in the host layers. The antacid performance and pH stability is also controllable by the choice of metal ions in the host layers. Confinement of the drugs between the metal’s layers restricts molecular interactions and dynamics and should improve long-term stability. Improved taste qualities of the formulation are also predicted.

Isis Innovation, Oxford University’s technology transfer company, has filed a UK priority patent application for this technology and welcomes contact from potential commercial partners.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/957.html

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>