Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method of Controlled Drug Release

11.02.2003


Researchers in Oxford University’s Inorganic Chemistry Laboratory have found that they can intercalate a range of pharmaceutically active molecules between the layers of a layered inorganic host.



While working on the ion-exchange abilities of a family of inorganic materials known as Layered Double Hydroxides (LDHs), researchers have recognised that many commonly prescribed drugs and other over-the-counter medicines are either anions or can be conveniently and reversibly converted into an anion form. Research revealed that addition of one of these LDHs to a solution of a chosen pharmaceutical in water at room temperature results in intercalation of the these molecules between the sheets of the host structure. The LDHs are able to swell by up to 20Å to accommodate the size of the new guest molecules.

Certain drugs require controlled release and/or amelioration of side effects. LDHs already have medicinal properties in their own right as antacid and antipepsin agents. Propriety antacids products such as Talcid™ and Altacite™ contain the LDH [Mg6Al2(OH)16]CO3.


To date, the researchers have shown that compounds such Diclofenac, Ibuprofen, Naproxen, and Gemfibrozil intercalate rapidly into LDHs. The researchers are then able to quantitatively recover these molecules on demand. At the moment, drug release can be achieved by either dissolving the entire drug/LDH composite in dilute acid or by adding the drug/LDH to a phosphate buffer at pH 7. Preliminary kinetics experiments using phosphate buffers show that these drugs can be released back into solution in 1-3 hours at 37 °C.

Apart from the potential of using these materials to deliver drugs in vivo, the host itself could have additional benefits. It will be possible to control the point of release and pharmokinetic profile by selection of the metals ions in the host layers. The antacid performance and pH stability is also controllable by the choice of metal ions in the host layers. Confinement of the drugs between the metal’s layers restricts molecular interactions and dynamics and should improve long-term stability. Improved taste qualities of the formulation are also predicted.

Isis Innovation, Oxford University’s technology transfer company, has filed a UK priority patent application for this technology and welcomes contact from potential commercial partners.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/957.html

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>