Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers study smallpox vaccination protection over time

11.02.2003


Scientists study those vaccinated more than 60 years ago versus one year ago

Oregon Health & Science University researchers are studying the effectiveness of the smallpox vaccine in patients who received inoculations decades ago compared with those vaccinated more recently. The universal belief has been that smallpox vaccinations provide protection for only three to five years. Until now scientists and physicians assumed that anyone vaccinated more than five years ago had little to no protection left. However, researchers at the OHSU Vaccine and Gene Therapy Institute believe that conventional thinking may not be true. To test their theories, scientists are studying how much protection the smallpox vaccination provides 67 years later versus just a year ago. This information may provide a more accurate way of estimating the spread of a potential smallpox outbreak, because nearly 95 percent of Americans older than 35 were vaccinated, and many may still have strong immunity against smallpox.

"I’ve been intrigued about immunological memory for more than a decade. It’s exciting to be able to apply this interest to something that’s relevant to our community right now," said Mark Slifka, Ph.D., assistant professor of molecular microbiology and immunology in the OHSU School of Medicine "We know that people who contract yellow fever, polio, measles or mumps gain a lifelong immunity to those diseases. Now we want to see if this is universally true for other viruses, such as vaccinia, the virus used for immunizing against smallpox."



Vaccinia is a virus contained within the smallpox vaccine and is closely related to smallpox. However, in most cases, vaccinia does not cause serious health problems. The virus promotes smallpox protection by causing the body to produce protective antibodies and white blood cells that can search for and destroy smallpox-infected cells.

Slifka’s lab is collecting blood samples from study participants. These samples are then analyzed to determine the participants’ level of immunity against smallpox. Of the participants that have joined this ongoing study, six people were vaccinated within the last seven years while more than 100 were vaccinated between 15 and 67 years ago. His team is comparing the immunity of both groups to determine whether the vaccine truly loses potency over time.

This study looks at the effectiveness of both arms of the body’s adaptive immune response: antibodies and T-cells. Blood samples from study participants are exposed to vaccina in petri dishes, the same virus used in the smallpox vaccine. If a person has strong immunity against vaccina, then his/her antibodies will neutralize the virus, thus saving healthy cells from becoming infected. If the virus is able to slip past this first line of defense and actually cause an infection, then a strong T-cell response is necessary to destroy virus-infected cells before they multiply and spread.

"In a petri dish, the vaccinia virus is typically very destructive and will eventually kill all of the cells that it encounters. However, if we mix blood serum of a vaccinated person with the virus before it can invade the first cell, then no damage occurs because the cells are protected against infection. Visually, weak immunity against smallpox looks in the petri dish like a lawn with a lot of dead patches of grass, while strong immunity results in a healthy "lawn" that has very few dead patches. With these and other techniques in hand, we can determine who has strong immunity and who has weak immunity following smallpox vaccination." said Slifka.

Scientists are studying the relationship between two levels of protection: protection against the disease and protection against death. The vaccine may prove to provide less protection against disease over time. In other words, a person might still get infected, but vaccination may still provide enough protection to lower the risk of death.

Another standard, but not proven, belief is that three or more vaccinations provide more immunity. Slifka’s team also will look at the effectiveness of multiple vaccinations to determine if several vaccinations do build stronger immunity. Although most participants in this study have been vaccinated only once or twice, there are several volunteers that have been vaccinated between five and 11 times during their lifetimes.

Another research team at the VGTI and OHSU, led by Janko Nikolich-Zugich, M.D., Ph.D., and Mary Stenzel-Poore, Ph.D., is studying immunity to smallpox and vaccinia in people with weaker immune systems, such as the elderly, those on steroid therapy and those under significant stress. Using mice, they hope to discover specific defects in the immune system that prevent these immunocompromised individuals from receiving safe vaccinations against smallpox. Identifying these defects should help them develop re-engineered versions of the smallpox vaccine that can protect these vulnerable populations from this deadly disease. This group also will use Slifka’s results to complement their research and help engineer new vaccines for the vulnerable populations.

Slifka also hopes to work with his co-investigator, Jon Hanifin, M.D., professor emeritus of dermatology in the OHSU School of Medicine, to develop a future study that will look at the weakened immune systems of people with eczema and other skin conditions who were vaccinated years ago, but by today’s standards shouldn’t have been vaccinated.


SPECIFICS:

Mark Slifka, Ph.D., assistant professor of molecular microbiology and immunology in the OHSU School of Medicine; assistant scientist at the OHSU Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center.

Janko Nikolich-Zugich, M.D., Ph.D., professor of molecular microbiology and immunology in the OHSU School of Medicine; senior scientist at the OHSU Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center.

Mary Stenzel-Poore, Ph.D., associate professor of molecular microbiology and immunology in the OHSU School of Medicine.

Jon Hanifin, M.D., professor emeritus of dermatology in the OHSU School of Medicine

Christine Pashley | EurekAlert!

More articles from Health and Medicine:

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>