Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted immunotherapy eradicates cancer in mice

10.02.2003


May have potential value in treating patients with hematologic cancers



Researchers have developed a novel approach to genetically instruct human immune cells to recognize and kill cancer cells in a mouse model. The investigators plan to ultimately apply this strategy in a clinical trial setting for patients with certain forms of leukemias and lymphomas.

Scientists at Memorial Sloan-Kettering Cancer Center (MSKCC) genetically engineered an antigen receptor, introduced it into cultured human T cells, and infused the T cells in mice that bear widespread tumor cells. The modified T cells, now able to recognize the targeted antigen present on the tumor cells, eradicated the cancer.


The research will be published in the March 2003 issue of Nature Medicine and will be available on the journal’s Web site on February 10. It is the first time that adoptive immunotherapy with engineered human T cells has demonstrated in vivo efficacy in mice.

"Our findings represent a step forward in the field of adoptive T cell therapy," said senior author Michel Sadelain, MD, PhD, Head of the Gene Transfer and Gene Expression Laboratory and Co-Director of the Gene Transfer and Somatic Cell Engineering Laboratory at MSKCC. "Our studies aim to better understand the biological needs of T cells that are targeted to tumors and may potentially be applied to a variety of cancers in the foreseeable future."

Earlier experiments have shown that genetically modified human T cells could kill tumor cells in vitro, but the cells could not successfully carry out other immunological responses such as maintaining cell division, and would die prematurely when they were infused into the body of a mouse. In this study, researchers may have overcome some of these limitations by designing a method whereby human T cells, genetically altered to recognize certain blood cancers, multiply in such a manner that they retain the ability to eliminate human tumors in vivo in mice.

Investigators genetically instructed the T cells to target cells that express CD19, a protein found on the surface of normal and cancerous B cells, a type of white blood cell. B cell cancers include acute lymphoblastic leukemias (ALL), chronic lymphocytic leukemias (CLL), and most non-Hodgkin’s lymphomas.

"This unique methodology enables us to expand the number of specific T cells to clinically relevant numbers and extend their viability, thereby enhancing their therapeutic effectiveness and enabling them to eradicate disease, in this case a B cell tumor," said Dr. Sadelain.

The researchers also tested the genetically modified human T cells (or lymphocytes) in vivo. They established a mouse model in which human tumors are disseminated throughout the body and administered the T cells intravenously. In collaboration with nuclear medicine experts at MSKCC, the scientists used molecular imaging (Positron Emission Tomography or PET scanning) to map out exactly where the tumor cells were in the mice and to track the effectiveness of the therapy.

In addition, researchers were able to show that T cells obtained from patients with advanced CLL could be targeted in this manner to efficiently kill their own tumor cells in vitro.

"Collectively, these findings show that we have met many of the criteria necessary to conduct a clinical trial and test this approach in humans," said lead author Renier Brentjens, MD, PhD, an attending medical oncologist on the Leukemia Service at MSKCC and a member of Dr. Sadelain’s laboratory. "This field holds a lot of promise and we are currently investigating other genes to try to make T cells more robust in mounting immune responses against tumor cells," said Isabelle Rivière, PhD, Co-Director of the Gene Transfer and Somatic Cell Engineering Laboratory at MSKCC and a co-author of the study.


This study was supported by the National Institutes of Health; the MSKCC Department of Medicine Translational and Integrative Medicine Fund; The Goodwin Experimental Therapeutics Center (ETC) Fund at MSKCC; The Cure for Lymphoma Foundation (now called the Lymphoma Research Foundation); and Golfers Against Cancer.

Memorial Sloan-Kettering Cancer Center is the world’s oldest and largest institution devoted to prevention, patient care, research and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide.

Esther Carver | EurekAlert!
Further information:
http://www.mskcc.org/

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>