Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthesized molecule holds promise as antitumor agent

07.02.2003


Amphidinolides, a family of natural compounds that have shown promise as powerful antitumor agents, pose problems for cancer researchers because they are found in only minute amounts, and only in microscopic marine flatworms that live off the coasts of Japan and the U.S. Virgin Islands. Nature keeps a tight lock on its supply of amphidinolide.



Work by University of Illinois at Chicago chemistry professor Arun Ghosh may solve this problem. He’s successfully developed a way to synthesize amphidinolides, making potentially abundant quantities available for cancer research. Ghosh and doctoral student Chunfeng Liu reported on their technique in the Feb. 6 online edition of the Journal of the American Chemical Society.

"We wanted to synthesize amphidinolide in the laboratory for subsequent biological studies," said Ghosh. As an antitumor agent, "nobody knows its exact mechanism of action. It could be a microtubule stabilizing agent, like Taxol, or it could cause cellular apopotosis, where cancer cells are killed by chemotherapeutic agents," he said.


Ghosh and Liu began their work in January 2002 and by November, successfully synthesized a highly potent member of this family of compounds, designated amphidinolide T1. They’ve produced about 8 milligrams of the compound in their UIC laboratory and have sent a sample to the National Cancer Institute in Frederick, Md. for testing by Ernest Hamel, a noted expert in cancer research.

While Hamel said he has not yet tested the amphidinolide sample, he added, "its synthesis, of course, is a tour-de-force independent of its biological activity."

Nuclear magnetic resonance spectroscopy and other sophisticated technologies helped establish the chemical structure of many natural amphidinolides. Ghosh used that structural information and applied a technique called retrosynthetic analysis, developed by his post-doctoral mentor, Nobel laureate Elias James Corey, of Harvard University.

"On paper, we break the molecular structure down to its most basic parts, then we design chemical schemes to rebuild it in the laboratory," said Ghosh. "It’s a very complex molecule. Synthesis of a molecule of this nature is an art, and it becomes a challenge of how to put it together in the most elegant way."

Using planned synthetic strategy as a guide, the step-by-step construction of the molecule in the laboratory flask presents enormous challenges. It’s like trying to solve a complex puzzle. "In the end, this synthesis not only gives you a final product," said Ghosh, "it also allows you to discover a lot of important and useful reactions along the way."

An earlier synthetic success of Ghosh’s, the compound laulimalide, is showing promising results in laboratory tests against certain cancers previously treated by the drug Taxol, and has shown the ability to kill cells resistant to Taxol. The UIC chemistry professor hopes amphidinolide will prove to be even more effective as an antitumor agent.

"We hope we can modify the molecule to make it even more potent and more selective," said Ghosh. "Nature has given us only one molecule, but once we’ve synthesized it in the laboratory, we have the potential to make hundreds of thousands of different variations."

"When you look at all the good drugs available, you find about 60 to 70 percent are derived from nature. In the past, molecules like amphidinolides could not be discovered because we didn’t have the technology. Now the power of chemical design and synthesis provides a new tool for drug discovery."

The National Institutes of Health provided funding for Ghosh’s research. He hopes to win additional grants to do in-depth biological studies and begin synthesis of an even more potent member of the amphidinolide family, called amphidinolide N.

"That’s our next target, and we’re up to the challenge," said Ghosh. "The work on amphidinolide T1 was just the beginning. A lot of the story has yet to unfold."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>