Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain images reveal effects of antidepressants

06.02.2003


The experiences of millions of people have proved that antidepressants work, but only with the advent of sophisticated imaging technology have scientists begun to learn exactly how the medications affect brain structures and circuits to bring relief from depression.



Researchers at the University of Wisconsin-Madison and UW Medical School recently added important new information to the growing body of knowledge. For the first time, they used functional magnetic resonance imaging (fMRI)--technology that provides a view of the brain as it is working--to see what changes occur over time during antidepressant treatment while patients experience negative and positive emotions.

The study appears in the January issue of the American Journal of Psychiatry. UW psychology professor Richard Davidson, Ph.D., psychiatry department chair Ned Kalin, MD, research associate William Irwin and research assistant Michael Anderle were the authors.


The researchers found that when they gave the antidepressant venlafaxine (Effexor(r)) to a small group of clinically depressed patients, the drug produced robust alterations in the anterior cingulate. This area of the brain has to do with focused attention and also becomes activated when people face conflicts. Unexpectedly, the changes were observed in just two weeks.

"Conducting repeated brain scans in these patients allowed us to see for the first time how quickly antidepressants work on brain mechanisms," said Davidson, who also is director of the W. M. Keck Laboratory for Functional Brain Imaging and Behavior, where imaging for the study took place. He noted that the findings were surprising because patients don’t usually begin noticing mood improvements until after they have been taking antidepressants for three to five weeks.

The researchers also found that while the depressed patients displayed lower overall activity in the anterior cingulate than non-depressed controls, those depressed patients who showed relatively more activity before treatment responded better to the medication than those with lower pre-treatment activity. This kind of information may be extremely useful to clinicians someday, Kalin said.

"We expect that physicians in the future will be able to predict which patients will be the best candidates for antidepressants simply by looking at brain scans that reveal this type of pertinent information," said Kalin, who also is director of the HealthEmotions Research Institute, where scientists concentrate on uncovering the scientific basis of linkages between emotions and health. One third of all patients treated with antidepressants do not respond to them, and of those that do, only about 50 percent get completely better, he added.

Virtually all previous studies analyzing brain activity in depressed people used PET (positron emission tomography) and SPECT (single photon emission computed tomography) technology. With these imaging systems scientists were not able to obtain pictures with the same resolution as that which is now obtainable with fMRI, which provides a "working snapshot" of the brain.

The Wisconsin team used fMRI’s capability to capture brain activity as it occurred to record subjects’ reactions as they viewed pictures designed to stimulate negative and positive emotions.

"We believe that we can uncover the best indicators of treatment changes when we present research subjects these emotion challenges," said Davidson. "The pictures activate the individual circuits that underlie different kinds of emotional responses."

UW emotions researchers have been using fMRIs with emotion-challenging pictures for several years in an effort to understand normal and abnormal brain responses to a range of emotions. They theorize that in depressed people, reactions to negative emotions are similar to, but more exaggerated than, reactions that non-depressed people have, and that the reactions may be more difficult to turn off.

"We all experience some sadness from time to time, but in depression, the responses may be sustained and out of context," said psychiatrist Kalin.

With the HealthEmotions Research Institute, the Keck Laboratory for Functional Brain Imaging and Behavior and the Laboratory for Affective Neuroscience, UW is home to a critical mass of some of the foremost emotions researchers in the world.


###
CONTACT: Dian Land, 608-263-9893, dj.land@hosp.wisc.edu; Lisa Brunette, 608-263-5830, la.brunette@hosp.wisc.edu.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>