Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neurofibromin: It’s so degrading


Dr. Tyler Jacks of MIT and the Howard Hughes Medical Institute, Karen Cichowski of Brigham and Women’s Hospital and Harvard Medical School, and their colleagues have discovered how neurofibromin, a key regulator of the ras oncogene, is, itself, regulated. This discovery has promising therapeutic implications for the treatment of neurofibromatosis type I (NF1), a common hereditary disease that results from mutations in the neurofibromin gene, as well as the ~30% of human tumors that have altered Ras activity.

The report is published in the February 15th issue of Genes & Development.

Neurofibromin is a tumor suppressor protein encoded by the Nf1 gene on human chromosome 17. Neurofibromin helps protect cells against cancer by suppressing Ras, a potent activator of cell growth and proliferation. People with mutations in the Nf1 gene develop neurofibromatosis type I (NF1), a neurological disorder that affects 1 in 3,500 people world-wide. NF1 patients develop benign tumors along their peripheral and optic nerves, as well as café-au-lait skin spots. NF1 is also associated with an increased risk of malignant neurological tumor development and childhood learning disabilities.

Although the Nf1 gene was identified in 1990, this work by Drs. Jacks, Cichowski and colleagues is the first report of how neurofibromin activity is regulated inside the cell.

"NF1 is a quite common and often quite devastating genetic disease, and yet we know rather little about the protein whose loss underlies it. This work begins to define the details of the normal regulation of the neurofibromin protein, and we hope that this new information will help guide the development of agents that will be useful in NF1 treatment and prevention," explains Dr. Jacks.

Under normal, growth-conducive conditions, small, secreted molecules called growth factors bind to receptors on the cell surface to trigger cellular proliferation. Drs. Jacks, Cichowski and colleagues found that this growth factor-mediated activation of cell division entails the destruction of neurofibromin protein by the so-called "ubiquitin-proteasome pathway" – a specialized intracellular protein-degradation cascade -- and the subsequent activation of Ras. However, the researchers also found that shortly after neurofibromin is degraded, its levels re-elevate to attenuate Ras activity and prevent excessive cell proliferation.

Since Nf1-deficient mice die during embryogenesis, Drs. Jacks, Cichowski and colleagues genetically engineered embryonic mouse cells to lack either one or both copies of the Nf1 gene, generating Nf1 heterozygous, or Nf1 homozygous cells, respectively. Nf1 homozygous cells were hypersensitive to growth factors: Due to their enhanced activation of Ras, Nf1 homozygous cells proliferated in response to low (sub-threshold) levels of growth factors, and continued dividing for extended periods of time. The elevated expression of Ras in Nf1 homozygous cells is thought to contribute to tumor formation NF1 patients.

The researchers also observed that Nf1 heterozygous cells show an increased sensitivity to growth factors, although not as marked as that of the Nf1 homozygous cells. This observation suggests that even diminished neurofibromin levels (resulting from the loss of one copy of the Nf1 gene) can adversely affect normal cell behavior, and may underlie the more subtle clinical features of NF1, like learning disabilities.

Ultimately, the elucidation of this neurofibromin regulatory network will aid in the development of targeted therapies to block neurofibromin degradation in NF1 patients, and perhaps also in some subset of the cancers in which amplified Ras activity confers upon cells the tumorigenic capacity for unregulated growth and proliferation.

Michele McDonough | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>