Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurofibromin: It’s so degrading

06.02.2003


Dr. Tyler Jacks of MIT and the Howard Hughes Medical Institute, Karen Cichowski of Brigham and Women’s Hospital and Harvard Medical School, and their colleagues have discovered how neurofibromin, a key regulator of the ras oncogene, is, itself, regulated. This discovery has promising therapeutic implications for the treatment of neurofibromatosis type I (NF1), a common hereditary disease that results from mutations in the neurofibromin gene, as well as the ~30% of human tumors that have altered Ras activity.



The report is published in the February 15th issue of Genes & Development.

Neurofibromin is a tumor suppressor protein encoded by the Nf1 gene on human chromosome 17. Neurofibromin helps protect cells against cancer by suppressing Ras, a potent activator of cell growth and proliferation. People with mutations in the Nf1 gene develop neurofibromatosis type I (NF1), a neurological disorder that affects 1 in 3,500 people world-wide. NF1 patients develop benign tumors along their peripheral and optic nerves, as well as café-au-lait skin spots. NF1 is also associated with an increased risk of malignant neurological tumor development and childhood learning disabilities.


Although the Nf1 gene was identified in 1990, this work by Drs. Jacks, Cichowski and colleagues is the first report of how neurofibromin activity is regulated inside the cell.

"NF1 is a quite common and often quite devastating genetic disease, and yet we know rather little about the protein whose loss underlies it. This work begins to define the details of the normal regulation of the neurofibromin protein, and we hope that this new information will help guide the development of agents that will be useful in NF1 treatment and prevention," explains Dr. Jacks.

Under normal, growth-conducive conditions, small, secreted molecules called growth factors bind to receptors on the cell surface to trigger cellular proliferation. Drs. Jacks, Cichowski and colleagues found that this growth factor-mediated activation of cell division entails the destruction of neurofibromin protein by the so-called "ubiquitin-proteasome pathway" – a specialized intracellular protein-degradation cascade -- and the subsequent activation of Ras. However, the researchers also found that shortly after neurofibromin is degraded, its levels re-elevate to attenuate Ras activity and prevent excessive cell proliferation.

Since Nf1-deficient mice die during embryogenesis, Drs. Jacks, Cichowski and colleagues genetically engineered embryonic mouse cells to lack either one or both copies of the Nf1 gene, generating Nf1 heterozygous, or Nf1 homozygous cells, respectively. Nf1 homozygous cells were hypersensitive to growth factors: Due to their enhanced activation of Ras, Nf1 homozygous cells proliferated in response to low (sub-threshold) levels of growth factors, and continued dividing for extended periods of time. The elevated expression of Ras in Nf1 homozygous cells is thought to contribute to tumor formation NF1 patients.

The researchers also observed that Nf1 heterozygous cells show an increased sensitivity to growth factors, although not as marked as that of the Nf1 homozygous cells. This observation suggests that even diminished neurofibromin levels (resulting from the loss of one copy of the Nf1 gene) can adversely affect normal cell behavior, and may underlie the more subtle clinical features of NF1, like learning disabilities.

Ultimately, the elucidation of this neurofibromin regulatory network will aid in the development of targeted therapies to block neurofibromin degradation in NF1 patients, and perhaps also in some subset of the cancers in which amplified Ras activity confers upon cells the tumorigenic capacity for unregulated growth and proliferation.

Michele McDonough | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>