Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Personalised doses of insulin


Diabetes is a widespread illness affecting 5 per cent of the population. In diabetics the metabolism produces an excess of glucose in the blood and, as a result, a number of sufferers need doses of insulin which allows them to regulate their glucose levels.

Currently, the method of administering insulin to diabetic patients making use of emergency services for insulin dosage depends on the experience of the qualified personnel. That is, the same patient can receive different insulin doses, and in different ways, according to the doctor attending her or him.

In order to improve this system of administration, Doctor Tomás Rubio proposed in his doctoral thesis the development of a mathematical model which would facilitate predicting the exact amount of insulin needed by a patient at any time. The thesis showed that both the absorption constant (the time taken for the insulin to enter the blood and become effective) as well as the elimination constant (the time taken for the insulin to disappear), is different for each patient. Moreover, for any one patient this absorption constant varies with time.

Given this, Doctor Tomás Rubio proposed using a technique based in blood extractions. He concluded that, by taking samples at two different times, the level of glycemia can be measured and the constants of absorption and elimination can be calculated. Knowing these constants, the exact amount of insulin needed by the patient can be calculated. Nevertheless, if the patient suffers another decompensation crisis, it will be necessary to recalculate these constants.

Apart from its use in emergency services, this model has applications for self-medication by the patient at home. For example, it can be used with the insulin perfusion pumps currently used to apply a quantity of insulin, depending on the glucose level. It can also be used with patients undergoing surgery in order to know how much insulin has to be administered during the operation and to control the amount of glucose administered via serum.

Two types of patients

Two types of patients are distinguished in this study. The first corresponds to insulin-dependant diabetic patients, normally young people, who require insulin for their treatment and whose acute condition is usually diabetic ketoacidosis. The second type corresponds to patients who have very high levels of glycemia, usually older and overweight people, who are normally regulated through orally administered antidiabetic medication, although many of these also end up needing insulin. These patients show acute conditions of hyperosmolar coma and symptomatic hyperglycemia.

The research was carried out on patients with the different acute conditions: diabetic ketoacidosis, hyperosmolar coma and symptomatic hyperglycemia. From the analysis of the results it was concluded that, for the construction of the mathematical model, the measuring of glycemia and insulin were necessary

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
(+34) 948 16 97 82

Iñaki Casado Redin | BasqueResearch
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>