# Forum for Science, Industry and Business

Search our Site:

## Personalised doses of insulin

05.02.2003

Diabetes is a widespread illness affecting 5 per cent of the population. In diabetics the metabolism produces an excess of glucose in the blood and, as a result, a number of sufferers need doses of insulin which allows them to regulate their glucose levels.

Currently, the method of administering insulin to diabetic patients making use of emergency services for insulin dosage depends on the experience of the qualified personnel. That is, the same patient can receive different insulin doses, and in different ways, according to the doctor attending her or him.

In order to improve this system of administration, Doctor Tomás Rubio proposed in his doctoral thesis the development of a mathematical model which would facilitate predicting the exact amount of insulin needed by a patient at any time. The thesis showed that both the absorption constant (the time taken for the insulin to enter the blood and become effective) as well as the elimination constant (the time taken for the insulin to disappear), is different for each patient. Moreover, for any one patient this absorption constant varies with time.

Given this, Doctor Tomás Rubio proposed using a technique based in blood extractions. He concluded that, by taking samples at two different times, the level of glycemia can be measured and the constants of absorption and elimination can be calculated. Knowing these constants, the exact amount of insulin needed by the patient can be calculated. Nevertheless, if the patient suffers another decompensation crisis, it will be necessary to recalculate these constants.

Apart from its use in emergency services, this model has applications for self-medication by the patient at home. For example, it can be used with the insulin perfusion pumps currently used to apply a quantity of insulin, depending on the glucose level. It can also be used with patients undergoing surgery in order to know how much insulin has to be administered during the operation and to control the amount of glucose administered via serum.

Two types of patients

Two types of patients are distinguished in this study. The first corresponds to insulin-dependant diabetic patients, normally young people, who require insulin for their treatment and whose acute condition is usually diabetic ketoacidosis. The second type corresponds to patients who have very high levels of glycemia, usually older and overweight people, who are normally regulated through orally administered antidiabetic medication, although many of these also end up needing insulin. These patients show acute conditions of hyperosmolar coma and symptomatic hyperglycemia.

The research was carried out on patients with the different acute conditions: diabetic ketoacidosis, hyperosmolar coma and symptomatic hyperglycemia. From the analysis of the results it was concluded that, for the construction of the mathematical model, the measuring of glycemia and insulin were necessary

Contact :
Nafarroako Unibertsitate Publikoa
(+34) 948 16 97 82

Further information:
http://www.unavarra.es

### More articles from Health and Medicine:

New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

### Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

### Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

### Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

### Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

### Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige