Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bone marrow cells take on new role in the brain, say Stanford researchers


Researchers in the Baxter Laboratory at Stanford University Medical Center have published new evidence showing that cells from the bone marrow might help repair or maintain cells in other tissues. In a paper in this week’s online edition of the Proceedings of the National Academy of Sciences, the researchers describe finding chromosomes from a bone marrow transplant in the brain cells of transplant recipients.

When people receive a bone marrow transplant after high-dose chemotherapy, some of the transplanted cells regenerate the blood-making cells that were destroyed. In past experiments in mice, Helen Blau, PhD, the Donald E. and Delia B. Baxter Professor of Pharmacology at the School of Medicine, found that cells from the transplant could also relocate to tissues throughout the body rather than being restricted to the bone marrow and blood.

"Now we know that it can also happen in humans," said James Weimann, PhD, first author on the paper and a senior research scientist in Blau’s lab.

Blau and Weimann looked at brain samples taken from women who underwent chemotherapy to treat their leukemia and then later received bone marrow transplants from male donors. These samples were ideal for this experiment because the donor cells contained a Y sex chromosome whereas cells in the women contained only X chromosomes. Any Y chromosome that Blau and Weimann identified must have come from the transplant donor.

To look for the telltale Y chromosome, the researchers used molecules with a double identity. One part of the molecule could bind to either the X or Y chromosome, while the other part acted as a fluorescent molecular beacon. The molecule that bound the X chromosome had a red beacon whereas the Y-recognizing molecule had a green beacon. When they put these stains on the preserved samples, the X chromosomes glowed red and any Y chromosomes glowed green. Weimann then searched the samples under a microscope for green chromosomes in the brain tissue.

As expected, blood cells within the brain contained Y chromosomes because they were made by bone marrow cells from the transplant. The researchers also found five nerve cells called Purkinje cells - involved in controlling balance and movement - that contained Y chromosomes in addition to their original X chromosomes. These out-of-place chromosomes could only have come from male cells in the bone marrow transplant.

Blau suspects the Purkinje cells may have gotten their Y chromosome from a group of traveling bone marrow cells. "I think these cells may act as a repair squad," Blau said. The cells travel the bloodstream, respond to stress and repair damaged tissues such as brain, muscle and possibly others throughout the body. She added that in some cases the bone marrow cells might fuse with damaged cells while in other instances they transform to replace the cells.

She said the next steps are to learn which cells in the bone marrow act as the repair squad, how these cells are lured to tissues and how they repair damage once they get there. "If we can learn what the signals are, we may be able to direct the repair cells to where they are needed," Blau said. "Wouldn’t it be terrific if we could enlist the body to treat its own disease?"

Blau added that adult bone marrow cells may be particularly useful for treating some diseases or some tissues but not others. "We need to study all types of stem cells," she said.

Other Stanford researchers who contributed to this work include Carol Charlton, PhD, a research associate, and graduate student Timothy Brazelton, PhD.

PRINT MEDIA CONTACT: Amy Adams at (650) 723-3900 (
BROADCAST MEDIA CONTACT: Neale Mulligan at (650) 724-2454 (

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at

Amy Adams | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>