Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow cells take on new role in the brain, say Stanford researchers

05.02.2003


Researchers in the Baxter Laboratory at Stanford University Medical Center have published new evidence showing that cells from the bone marrow might help repair or maintain cells in other tissues. In a paper in this week’s online edition of the Proceedings of the National Academy of Sciences, the researchers describe finding chromosomes from a bone marrow transplant in the brain cells of transplant recipients.



When people receive a bone marrow transplant after high-dose chemotherapy, some of the transplanted cells regenerate the blood-making cells that were destroyed. In past experiments in mice, Helen Blau, PhD, the Donald E. and Delia B. Baxter Professor of Pharmacology at the School of Medicine, found that cells from the transplant could also relocate to tissues throughout the body rather than being restricted to the bone marrow and blood.

"Now we know that it can also happen in humans," said James Weimann, PhD, first author on the paper and a senior research scientist in Blau’s lab.


Blau and Weimann looked at brain samples taken from women who underwent chemotherapy to treat their leukemia and then later received bone marrow transplants from male donors. These samples were ideal for this experiment because the donor cells contained a Y sex chromosome whereas cells in the women contained only X chromosomes. Any Y chromosome that Blau and Weimann identified must have come from the transplant donor.

To look for the telltale Y chromosome, the researchers used molecules with a double identity. One part of the molecule could bind to either the X or Y chromosome, while the other part acted as a fluorescent molecular beacon. The molecule that bound the X chromosome had a red beacon whereas the Y-recognizing molecule had a green beacon. When they put these stains on the preserved samples, the X chromosomes glowed red and any Y chromosomes glowed green. Weimann then searched the samples under a microscope for green chromosomes in the brain tissue.

As expected, blood cells within the brain contained Y chromosomes because they were made by bone marrow cells from the transplant. The researchers also found five nerve cells called Purkinje cells - involved in controlling balance and movement - that contained Y chromosomes in addition to their original X chromosomes. These out-of-place chromosomes could only have come from male cells in the bone marrow transplant.

Blau suspects the Purkinje cells may have gotten their Y chromosome from a group of traveling bone marrow cells. "I think these cells may act as a repair squad," Blau said. The cells travel the bloodstream, respond to stress and repair damaged tissues such as brain, muscle and possibly others throughout the body. She added that in some cases the bone marrow cells might fuse with damaged cells while in other instances they transform to replace the cells.

She said the next steps are to learn which cells in the bone marrow act as the repair squad, how these cells are lured to tissues and how they repair damage once they get there. "If we can learn what the signals are, we may be able to direct the repair cells to where they are needed," Blau said. "Wouldn’t it be terrific if we could enlist the body to treat its own disease?"

Blau added that adult bone marrow cells may be particularly useful for treating some diseases or some tissues but not others. "We need to study all types of stem cells," she said.

Other Stanford researchers who contributed to this work include Carol Charlton, PhD, a research associate, and graduate student Timothy Brazelton, PhD.


PRINT MEDIA CONTACT: Amy Adams at (650) 723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: Neale Mulligan at (650) 724-2454 (nealem@stanford.edu)

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Amy Adams | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>