Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibodies critical for fighting West Nile Virus infection

30.01.2003


Researchers at Washington University School of Medicine in St. Louis have found that immune cells called B cells and the antibodies they produce play a critical early role in defending the body against West Nile Virus. The results are published in the February issue of the Journal of Virology.



Mice that lacked B cells and antibodies were completely unable to combat the virus. They developed serious brain and spinal-cord infection and ultimately died.

"These findings may help explain why the elderly and others with weakened immunity are most likely to develop serious disease when infected by the virus," says study leader Michael S. Diamond, M.D., Ph.D., assistant professor of medicine, of molecular microbiology and of pathology and immunology.


West Nile Virus first emerged in the eastern United States in 1999 and has spread steadily westward, reaching the West Coast last year. It is carried by mosquitoes and causes encephalitis, a brain inflammation. The virus affects mainly birds, especially crows and jays, but it also can cause disease in horses, humans and other mammals.

In humans, West Nile Virus causes serious illness in only a small proportion of infected people. Last year, doctors reported more than 3,500 cases of infection, with 5 to 10 percent of those resulting in serious illness or death.

Diamond and his colleagues infected a strain of immune-deficient mice that lacked two important components of the immune system -- T cells and B cells -- and compared the animals’ response to mice with normal immunity. T cells coordinate immune responses and kill infected cells; B cells produce antibodies that attack viruses before they infect cells.

The immune-deficient mice became sick and died even with low doses of the virus. However, they could resist infection if given a dose of B cells after being injected with the virus.

"We were surprised by how susceptible the mice were when antibodies were missing," says Diamond. "Just one viral particle -- an exceedingly low dose -- was enough to kill the mice."

To confirm the importance of B cells and antibodies in defending against West Nile Virus, the researchers then gave the virus to a group of immune-deficient mice that lacked only B cells and antibodies, again comparing their response to mice with normal immunity. At day two, both the B-cell deficient mice and normal mice had equal levels of the virus in the blood. The levels declined thereafter in the normal mice and were undetectable by day six. In the B-cell deficient mice, however, viral levels continued to increase, with 500-fold higher levels by day four.

From this, the investigators conclude that B cells and antibodies appear to be essential for controlling the infection.

"Our findings suggest – but this is just speculation – that humans who have weak antibody responses early during infection are more likely to develop serious disease," says Diamond. "Those are the people we’d want to target when a vaccine or treatment becomes available."

Diamond and his colleagues now are studying how antibodies control infection and what other parts of the immune system are involved.


Diamond MS, Shrestha B, Marri A, Mahan D, Engle M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile Encephalitis Virus. Journal of Virology, February. 2003.

Funding from the National Institute of Allergy and Infectious Diseases supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Darrell Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>