Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Puzzle solved on how influenza builds its infectious seeds

28.01.2003


By solving a long-standing puzzle about how the influenza virus assembles its genetic contents into infectious particles that enable the virus to spread from cell to cell, scientists have opened a new gateway to a better understanding of one of the world’s most virulent diseases.



This insight into the genetic workings that underpin infection by flu, reported today (January 27, 2003) in the Proceedings of the National Academy of Sciences (PNAS), provides not only a better basic understanding of how flu and other viruses work, but holds significant promise for new and better vaccines and drugs to combat the disease by exposing the genetic trick it uses to form virus particles.

The new work is reported by a group led by Yoshihiro Kawaoka, a professor of pathobiological sciences at the University of Wisconsin-Madison School of Veterinary Medicine, who has a joint appointment at the University of Tokyo. The group’s work describes how the flu virus selectively assembles the series of genetic subunits that make up the virus’ entire genome, which are needed to form the particles that shuttle the virus from cell to cell.


It has long been known that the influenza A virus genome requires eight different segments of RNA or ribonucleic acid to be complete. But how those RNA segments are recruited to form a complete flu genome within a cell and create particles known as virions that can go on to infect other cells was unknown.

Now, the group led by Kawaoka, in a series of detailed experiments, has uncovered a molecular signal on a single strand of RNA that is critical in the infection process. This signal selectively recruits the necessary set of eight viral RNA strands to make a complete influenza genome within the infectious particles for the influenza A strain, the most virulent and potentially dangerous flu virus.

"What’s unique about this virus is that its genome is fragmented into eight RNA segments," Kawaoka said. "How those eight segments incorporate into a virus particle was not known."

Viruses are masters of cellular chicanery, typically co-opting a cell’s own reproductive machinery to make copies of itself in order to infect other cells. By making artificial flu viruses with varying numbers of RNA segments, Kawaoka’s group was able to show that the virus is at its most prolific when all eight RNA segments are in place: "Our results show that when cells contain eight different segments (of viral RNA) they produce virions most efficiently."

That finding, according to Kawaoka, indicates that the individual RNA segments each make unique contributions toward the recruitment and assembly of disparate RNA fragments into a complete influenza genome. The discovery may help pinpoint the molecular Achilles’ heel of influenza, and enable the development of new vaccines and antiviral drugs that would interfere with the ability of the virus to assemble its genome within a cell and go about the business of producing particles to infect other cells.

"These eight different segments are critical for formation of virus particles," Kawaoka said.

Kawaoka’s work is especially important because the strain of virus used in the study, influenza A, includes the viruses responsible for the pandemics that, from time to time, sweep the globe killing millions. The most notable in recent history, the Spanish flu pandemic of 1918, killed an estimated 20 million people worldwide in a matter of months. Scientists believe it is only a matter of time before a similar pandemic recurs as the flu virus is capable of changing to avoid immune system defenses and vaccines deployed against it.

The report by Kawaoka’s team lends support to one of two competing models proposed for the generation of infectious influenza A virions. One view held that the RNA segments assembled in a random manner, depending on some common feature among the eight RNA segments to draw them randomly into the influenza genome. The selective model, which the new work supports, holds that specific structures in the individual RNA segments are responsible for combining the eight genetic fragments into a virion.

In addition to Kawaoka, members of the group publishing the report in today’s PNAS include: Yutaka Fujii of Hiroshima University, the University of Tokyo and the UW-Madison School of Veterinary Medicine; Hideo Goto and Tokiko Watanabe of the University of Tokyo and the Japan Science and Technology Corp.; and Tetsuya Yoshida of Hiroshima University.



The study was supported by the U.S. National Institute of Allergy and Infectious Diseases through a Public Health Service Research grant; the Japanese Ministry of Education, Culture, Sports, Science and Technology; and the Japan Science and Technology Corp.

Terry Devitt 608-262-8282, trdevitt@wisc.edu

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>