Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimally invasive treatment successfully destroys kidney tumors

28.01.2003


Treatment appropriate for some patients who are not good surgical candidates



A minimally invasive, experimental treatment is proving successful in removing small kidney tumors from appropriate patients, report researchers from Massachusetts General Hospital (MGH). In a study in the February 2003 issue of Radiology, the MGH team describes how a technique called radiofrequency ablation (RFA) destroyed all renal cell carcinoma (RCC) tumors less than 3 cm in size and some larger tumors, depending on their location. The most common form of kidney cancer, RCC will be diagnosed in almost 32,000 Americans this year and is most frequently treated with surgical removal through either an open or laparoscopic procedure.

"We’re very pleased with the success we’ve had, particularly treating small tumors and those on the outside of the kidney," says Debra Gervais, MD, of the Abdominal Imaging and Interventional Radiology Service in the MGH Department of Radiology, the paper’s first author. "We now have an another year of experience beyond what is reported in this paper - more than 30 additional patients - with similar results."


RFA delivers heat generated by electrical energy to tumor sites through a thin needle, similar to probes used in biopsy procedures. Placement of the probe is guided by CT scan, ultrasound or other imaging techniques. Widely used to treat cardiac arrhythmias, RFA is also being investigated for destruction of small liver tumors and has been used for more than ten years to treat a benign bone tumor called osteoid osteoma. Researchers at several centers have used it for patients with kidney tumors for whom surgical removal was not an option -- including patients with only one kidney -- and the current study reports what may be the largest number of patients treated and the longest followup time.

The MGH researchers describe the outcomes for the first 34 consecutive patients treated with RFA over a three-and-a-half-year period. Because surgical removal cures kidney tumors, the only patients treated with RFA were those with medical conditions making surgery risky or with either a single kidney or poor kidney function. A total of 42 individual tumors were treated, ranging in size from 1 to almost 9 centimeters. All tumors located on the surface of the kidney were completely destroyed, regardless of size. Although larger tumors within the central kidney were more difficult to treat, more than half of such tumors were destroyed with additional treatments.

Patients were evaluated one, three and six months after treatment, then at six-month or one-year intervals. During the followup period, which ranged from three months to three and a half years, four patients died of unrelated causes, two of whom had no tumor recurrence. The other 30 patients have had no local recurrence of the treated tumor. None of the patients with limited kidney function needed to go on dialysis.

Peter R. Mueller, MD, MGH director of Abdominal Imaging and the paper?s senior author, says, "The team approach that we?ve taken with our colleagues in urology is a major aspect of the success we’ve had with this treatment. We’re very excited about the results we’re seeing and the very low rate of complications. Even patients with multiple tumors can be treated as outpatients and maintain good kidney function."

"In our more than four years of experience with this technique, we’ve had encouraging results in this particular group of patients," adds W. Scott McDougal, MD, chief of Urology at MGH and a co-author of the study. "I am optimistic that, with further study, RFA will someday become the standard of care for selected kidney tumors."


Other co-authors of the report are Francis McGovern, MD, urologist, and Ronald Arellano, MD, radiologist, both of MGH.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $300 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, transplantation biology and photomedicine. In 1994, the MGH joined with Brigham and Women’s Hospital to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups and nonacute and home health services.

Susan McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>